The diurnal evolution of the atmospheric boundary layer--the lowermost part of the atmosphere where the majority of human activity and meteorological phenomena take place--is described by its depth. Additionally, the boundary layer height (BLH) and the turbulence intensity strongly impact the pollutant diffusion, especially during transition periods. Based on integrated observations from a 325-m meteorological tower and a Doppler Wind lidar in the center of Beijing, the entire diurnal cycle of urban BLH in December 2016 was characterized. Results highlight that the Doppler lidar exhibited it is well suited for monitoring convective BLH while it trudges in monitoring stable BLH, while a 325-m meteorological tower provided an important supplement for Doppler lidar under nocturnal boundary layer and heavily polluted conditions. For the diurnal cycle, under light wind condition, the pattern of urban BLH was largely modulated by thermal forcing of solar radiation and may partly be affected by wind speed. While under strong wind condition, the pattern of urban BLH was largely modulated both by thermal forcing and dynamical forcing. The present work also presented evidence for several new features in the morning and afternoon transitions of the urban boundary layer, showing the duration of the morning transition varied between 1 and 5 h, with the largest value occurring under weak wind with high PM2.5 concentration; while the afternoon transition ranged from 3 to 6 h, which was positively (negatively) correlated to wind speed (PM2.5 concentration). Our work highlights that weak wind speed (weak dynamic motion) and heavy aerosol pollution (weak thermal forcing due to the effect of cooling) can dramatically affect the evolution of the boundary layer

Diurnal evolution of the wintertime boundary layer in urban beijing, china: Insights from doppler lidar and a 325-m meteorological tower

Lolli S
2020

Abstract

The diurnal evolution of the atmospheric boundary layer--the lowermost part of the atmosphere where the majority of human activity and meteorological phenomena take place--is described by its depth. Additionally, the boundary layer height (BLH) and the turbulence intensity strongly impact the pollutant diffusion, especially during transition periods. Based on integrated observations from a 325-m meteorological tower and a Doppler Wind lidar in the center of Beijing, the entire diurnal cycle of urban BLH in December 2016 was characterized. Results highlight that the Doppler lidar exhibited it is well suited for monitoring convective BLH while it trudges in monitoring stable BLH, while a 325-m meteorological tower provided an important supplement for Doppler lidar under nocturnal boundary layer and heavily polluted conditions. For the diurnal cycle, under light wind condition, the pattern of urban BLH was largely modulated by thermal forcing of solar radiation and may partly be affected by wind speed. While under strong wind condition, the pattern of urban BLH was largely modulated both by thermal forcing and dynamical forcing. The present work also presented evidence for several new features in the morning and afternoon transitions of the urban boundary layer, showing the duration of the morning transition varied between 1 and 5 h, with the largest value occurring under weak wind with high PM2.5 concentration; while the afternoon transition ranged from 3 to 6 h, which was positively (negatively) correlated to wind speed (PM2.5 concentration). Our work highlights that weak wind speed (weak dynamic motion) and heavy aerosol pollution (weak thermal forcing due to the effect of cooling) can dramatically affect the evolution of the boundary layer
2020
Istituto di Metodologie per l'Analisi Ambientale - IMAA
boundary layer height
urban boundary laye
Doppler wind lidar
325-m meteorological tower
File in questo prodotto:
File Dimensione Formato  
prod_441824-doc_158594.pdf

non disponibili

Descrizione: Diurnal evolution of the wintertime boundary layer in urban beijing, china: Insights from doppler lidar and a 325-m meteorological tower
Tipologia: Versione Editoriale (PDF)
Dimensione 12.37 MB
Formato Adobe PDF
12.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? ND
social impact