The ability to grow inorganic thin films with highly controllable structural and optical properties at low substrate temperature enables the manufacturing of functional devices on thermo-sensitive substrates without the need of material postprocessing. In this study, the authors report on the growth of zinc oxide films by direct plasma-enhanced atomic layer deposition at near room temperature. Diethyl zinc and oxygen plasma were used as the precursor and coreactant, respectively. The process was optimized with respect to the precursor and coreactant dosing as well as to the purging times, which ultimately resulted in saturated atomic layer deposition growth. The so-obtained films exhibit a polycrystalline pattern with a (100) texture and low amount of incorporated carbon. Furthermore, the possibility to tune crystallite size, refractive index, and bandgap of the films by adapting the plasma radio-frequency power is demonstrated.

Tuning of material properties of ZnO thin films grown by plasma-enhanced atomic layer deposition at room temperature

Perrotta Alberto;
2018

Abstract

The ability to grow inorganic thin films with highly controllable structural and optical properties at low substrate temperature enables the manufacturing of functional devices on thermo-sensitive substrates without the need of material postprocessing. In this study, the authors report on the growth of zinc oxide films by direct plasma-enhanced atomic layer deposition at near room temperature. Diethyl zinc and oxygen plasma were used as the precursor and coreactant, respectively. The process was optimized with respect to the precursor and coreactant dosing as well as to the purging times, which ultimately resulted in saturated atomic layer deposition growth. The so-obtained films exhibit a polycrystalline pattern with a (100) texture and low amount of incorporated carbon. Furthermore, the possibility to tune crystallite size, refractive index, and bandgap of the films by adapting the plasma radio-frequency power is demonstrated.
2018
Plasma ALD
zinc oxide
thin films
room temperature growth
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? ND
social impact