The aim of this paper is to present and characterize Polyamidoamine-based hydrogels (PAA) as scaffolds to host photoactive Chlorophyll a (Chl a) from Spirulina (Arthrospira platensis) sea-weed Extract (SE), for potential applications in Photodynamic Therapy (PDT). The pigment extracted from SE was blended inside PAA without further purification, according to Green Chemistry principles. A comprehensive investigation of this hybrid platform, PAA/SE-based, was thus performed in our laboratory and, by means of Visible absorption and emission spectroscopies, the Chl a features, stability and photoactivity were studied. The obtained results evidenced the presence of two main Chl a forms, monomeric and dimeric, interacting with hydrogel polyamidoamines network. To better understand the nature of this interaction, the spectroscopic investigation of this system was performed both before and after the solidification of the hydrogel, that occurred at least in 24 h. Then, focusing the attention on solid scaffold, the Chl a fluorescence lifetime and FTIR-ATR analyses of PAA/SE were carried out, confirming the findings. The swelling and Point Zero Charge (PZC) measurements of solid PAA and PAA/SE were additionally performed to investigate the hydrogel behavior in water. Chl a molecules blended in PAA were (photo) stable and photoactive, and this latter feature was demonstrated showing that the pigment induced, when swelled in water and under irradiation, the formation of singlet oxygen (O), measured by direct and indirect methods.

Development of Spirulina sea-weed raw extract/polyamidoamine hydrogel system as novel platform in photodynamic therapy: Photostability and photoactivity of chlorophyll a

Fini Paola;Cosma Pinalysa
2021

Abstract

The aim of this paper is to present and characterize Polyamidoamine-based hydrogels (PAA) as scaffolds to host photoactive Chlorophyll a (Chl a) from Spirulina (Arthrospira platensis) sea-weed Extract (SE), for potential applications in Photodynamic Therapy (PDT). The pigment extracted from SE was blended inside PAA without further purification, according to Green Chemistry principles. A comprehensive investigation of this hybrid platform, PAA/SE-based, was thus performed in our laboratory and, by means of Visible absorption and emission spectroscopies, the Chl a features, stability and photoactivity were studied. The obtained results evidenced the presence of two main Chl a forms, monomeric and dimeric, interacting with hydrogel polyamidoamines network. To better understand the nature of this interaction, the spectroscopic investigation of this system was performed both before and after the solidification of the hydrogel, that occurred at least in 24 h. Then, focusing the attention on solid scaffold, the Chl a fluorescence lifetime and FTIR-ATR analyses of PAA/SE were carried out, confirming the findings. The swelling and Point Zero Charge (PZC) measurements of solid PAA and PAA/SE were additionally performed to investigate the hydrogel behavior in water. Chl a molecules blended in PAA were (photo) stable and photoactive, and this latter feature was demonstrated showing that the pigment induced, when swelled in water and under irradiation, the formation of singlet oxygen (O), measured by direct and indirect methods.
2021
Istituto per i Processi Chimico-Fisici - IPCF
Chlorophyll a
Hydrogels
Photodynamic therapy
Scaffolds
Singlet oxygen
Spirulina extract
File in questo prodotto:
File Dimensione Formato  
Spirulina Rizziet al 2021.pdf

solo utenti autorizzati

Descrizione: Versione editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Spirulina Rizziet al 2021.pdf

Open Access dal 09/10/2022

Descrizione: Pre-print
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/424017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact