This work investigates the performance and the radiation hardness capability of optical thermo-hygrometers based on Fibre Bragg Gratings (FBG) for humidity monitoring in the Compact Muon Solenoid (CMS), one of the four experiments running at CERN in Geneva. A thorough campaign of characterization was performed on 80 specially produced Polyimide-coated RH FBG sensors and 80 commercial temperature FBG sensors. Sensitivity, repeatability and accuracy were studied on the whole batch, putting in evidence the limits of the sensors, but also showing that they can be used in very dry conditions. In order to extract the humidity measurements from the sensor readings, commercial temperature FBG sensors were characterized in the range of interest. Irradiation campaigns with ionizing radiation (gamma-rays from a Co-60 source) at incremental absorbed doses (up to 210 kGy for the T sensors and up to 90 kGy for the RH sensors) were performed on sample of T and RH-Sensors. The results show that the sensitivity of the sensors is unchanged up to the level attained of the absorbed dose, while the natural wavelength peak of each sensor exhibits a radiation-induced shift (signal offset). The saturation properties of this shift are discussed.
Radiation hard polyimide-coated FBG optical sensors for relative humidity monitoring in the CMS experiment at CERN
Giordano M;
2014
Abstract
This work investigates the performance and the radiation hardness capability of optical thermo-hygrometers based on Fibre Bragg Gratings (FBG) for humidity monitoring in the Compact Muon Solenoid (CMS), one of the four experiments running at CERN in Geneva. A thorough campaign of characterization was performed on 80 specially produced Polyimide-coated RH FBG sensors and 80 commercial temperature FBG sensors. Sensitivity, repeatability and accuracy were studied on the whole batch, putting in evidence the limits of the sensors, but also showing that they can be used in very dry conditions. In order to extract the humidity measurements from the sensor readings, commercial temperature FBG sensors were characterized in the range of interest. Irradiation campaigns with ionizing radiation (gamma-rays from a Co-60 source) at incremental absorbed doses (up to 210 kGy for the T sensors and up to 90 kGy for the RH sensors) were performed on sample of T and RH-Sensors. The results show that the sensitivity of the sensors is unchanged up to the level attained of the absorbed dose, while the natural wavelength peak of each sensor exhibits a radiation-induced shift (signal offset). The saturation properties of this shift are discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.