Increasing awareness of environmental concerns has strongly pushed the scientific community towards the search for new solutions for efficient removal of oils and organic solvents from water. Here, we report the preparation of multifunctional TiO2-coated melamine-formaldehyde (MF) sponges as absorbent material for oils and organic solvents in water. TiO2-coated MF sponges were fabricated through an environmentally friendly approach, consisting in a simple immersion of the sponge into an oleic acid-capped TiO2 nanoparticles dispersion. The adhesion of TiOle coating to the sponge was then improved by the deposition of a low surface energy diamond-like carbon (DLC) thin layer. Our results highlighted that the modified MF sponges possess superhydrophobic and oleophilic behaviour, inertness to corrosive environment, good durability and reusability. Furthermore, the superhydrophobic DLC/TiO2@sponges showed (1) novel self-cleaning properties towards an absorbed commercial organic dye (IR-270BKA, chosen as representative) under visible light irradiation and (2) enhanced flame-retardant behaviour respect to the pristine MF sponge. These findings point out an important added value of DLC/TiOle@sponges making them promising candidates for wastewater treatments.

Development of superhydrophobic, self-cleaning, and flame-resistant DLC/TiO2 melamine sponge for application in oil-water separation

Toro Roberta G;Calandra Pietro;Federici Fulvio;de Caro Tilde;Mezzi Alessio;Cortese Barbara;Caschera Daniela
2020

Abstract

Increasing awareness of environmental concerns has strongly pushed the scientific community towards the search for new solutions for efficient removal of oils and organic solvents from water. Here, we report the preparation of multifunctional TiO2-coated melamine-formaldehyde (MF) sponges as absorbent material for oils and organic solvents in water. TiO2-coated MF sponges were fabricated through an environmentally friendly approach, consisting in a simple immersion of the sponge into an oleic acid-capped TiO2 nanoparticles dispersion. The adhesion of TiOle coating to the sponge was then improved by the deposition of a low surface energy diamond-like carbon (DLC) thin layer. Our results highlighted that the modified MF sponges possess superhydrophobic and oleophilic behaviour, inertness to corrosive environment, good durability and reusability. Furthermore, the superhydrophobic DLC/TiO2@sponges showed (1) novel self-cleaning properties towards an absorbed commercial organic dye (IR-270BKA, chosen as representative) under visible light irradiation and (2) enhanced flame-retardant behaviour respect to the pristine MF sponge. These findings point out an important added value of DLC/TiOle@sponges making them promising candidates for wastewater treatments.
2020
Istituto di Nanotecnologia - NANOTEC
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
oil water separation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/424220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 41
social impact