Active control of non-axisymmetric magnetic fields has been developed to increase the plasma performances in Tokamaks and RFPs. In the past at RFX, the effect of non-axisymmetric fields, static and rotating, with in = 0, n > 0, was studied. Through a plasma non linear coupling, the internal tearing modes coupled with the external m = 0 fields are dragged into rotation. The results have encouraged to realize a dedicated system for the generation of non-axisymmetric magnetic field by using ad hoc saddle coil arrays. One hundred and Ninety-two uniformly distributed saddle coils, each fed through switching power supply have been installed for the generation of m = 0 and 1 magnetic fields in a range n = 1-24. Each coil will be operated in a frequency range from dc to 300 Hz and will produce a maximum field intensity of 50 mT dc at the plasma surface. The resulting configuration of coils, power supplies, measurements and realtime control equipment gives nowadays the most versatile system for studies of non-axisymmetiic field effect on plasma. The experiments will be focused to increase the present understanding in the control of Resistive Wall Modes (RWMs) and to analyse the resonant and non-resonant MHD mode interaction with external magnetic fields, common issues for present Tokamaks and RFPs. The paper reviews the state-of-art of MHD control performed with non-axisymmetric external magnetic fields on Tokamaks and RFPs, with reference to the RWMs and field errors. The RFX contribution to the MHD mode control by external fields is discussed. (c) 2005 Elsevier B.V. All rights reserved.

Control of non-axisymmetric magnetic fields for plasma enhanced performances: The RFX contribution

R Piovan;A Luchetta;
2005

Abstract

Active control of non-axisymmetric magnetic fields has been developed to increase the plasma performances in Tokamaks and RFPs. In the past at RFX, the effect of non-axisymmetric fields, static and rotating, with in = 0, n > 0, was studied. Through a plasma non linear coupling, the internal tearing modes coupled with the external m = 0 fields are dragged into rotation. The results have encouraged to realize a dedicated system for the generation of non-axisymmetric magnetic field by using ad hoc saddle coil arrays. One hundred and Ninety-two uniformly distributed saddle coils, each fed through switching power supply have been installed for the generation of m = 0 and 1 magnetic fields in a range n = 1-24. Each coil will be operated in a frequency range from dc to 300 Hz and will produce a maximum field intensity of 50 mT dc at the plasma surface. The resulting configuration of coils, power supplies, measurements and realtime control equipment gives nowadays the most versatile system for studies of non-axisymmetiic field effect on plasma. The experiments will be focused to increase the present understanding in the control of Resistive Wall Modes (RWMs) and to analyse the resonant and non-resonant MHD mode interaction with external magnetic fields, common issues for present Tokamaks and RFPs. The paper reviews the state-of-art of MHD control performed with non-axisymmetric external magnetic fields on Tokamaks and RFPs, with reference to the RWMs and field errors. The RFX contribution to the MHD mode control by external fields is discussed. (c) 2005 Elsevier B.V. All rights reserved.
2005
Istituto gas ionizzati - IGI - Sede Padova
RESISTIVE WALL MODES
ACTIVE CONTROL
MHD MODES
PINCH
STABILIZATION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/42426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact