This paper shows that FSO could be an option for backhauling among microcells in future 5G systems in areas where fog is not a concern as very short LOS links (few hundred meters) would be required. In this respect, monthly CCDFs of rain attenuation at both RF (28 GHz) and optical bandwidth have been calculated in the area of Hyderabad (Pakistan). FSO links with simple OOK modulation would be able to reach targeted data rate of hundreds of Gbps for 99.99% of time provided the link length is less than few hundreds of meters.

Statistics of attenuation due to rain affecting hybrid FSO/RF link: Application for 5G networks

Luini L;Nebuloni R;
2017

Abstract

This paper shows that FSO could be an option for backhauling among microcells in future 5G systems in areas where fog is not a concern as very short LOS links (few hundred meters) would be required. In this respect, monthly CCDFs of rain attenuation at both RF (28 GHz) and optical bandwidth have been calculated in the area of Hyderabad (Pakistan). FSO links with simple OOK modulation would be able to reach targeted data rate of hundreds of Gbps for 99.99% of time provided the link length is less than few hundreds of meters.
2017
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Free Space Optics
rainfall
propagation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/424260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact