Bi-magnetic core-shell spinel ferrite-based nanoparticles with different CoFe2O4 core size, chemical nature of the shell (MnFe2O4 and spinel iron oxide), and shell thickness were prepared using an efficient solvothermal approach to exploit the magnetic coupling between a hard and a soft ferrimagnetic phase for magnetic heat induction. The magnetic behavior, together with morphology, stoichiometry, cation distribution, and spin canting, were investigated to identify the key parameters affecting the heat release. General trends in the heating abilities, as a function of the core size, the nature and the thickness of the shell, were hypothesized based on this systematic fundamental study and confirmed by experiments conducted on the water-based ferrofluids.

Coupled hard-soft spinel ferrite-based core-shell nanoarchitectures: magnetic properties and heating abilities

Sangregorio Claudio;
2020

Abstract

Bi-magnetic core-shell spinel ferrite-based nanoparticles with different CoFe2O4 core size, chemical nature of the shell (MnFe2O4 and spinel iron oxide), and shell thickness were prepared using an efficient solvothermal approach to exploit the magnetic coupling between a hard and a soft ferrimagnetic phase for magnetic heat induction. The magnetic behavior, together with morphology, stoichiometry, cation distribution, and spin canting, were investigated to identify the key parameters affecting the heat release. General trends in the heating abilities, as a function of the core size, the nature and the thickness of the shell, were hypothesized based on this systematic fundamental study and confirmed by experiments conducted on the water-based ferrofluids.
2020
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Nanoparticles
core-shell
spinel ferrite
exchange coupling
magnetic properties
magnetic fluid hyperthermia
Mössbauer spectroscopy
File in questo prodotto:
File Dimensione Formato  
Nanoscale Adv., 2020,2, 3191-3201.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/424336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact