Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CNR Institutional Research Information System
Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations withP < 5 x 10(-8)in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 x 10(-8)) in the discovery samples. Ten novel SNVs, including rs12616219 nearTMEM182, were followed-up and five of them (rs462779 inREV3L, rs12780116 inCNNM2, rs1190736 inGPR101, rs11539157 inPJA1, and rs12616219 nearTMEM182) replicated at a Bonferroni significance threshold (P < 4.5 x 10(-3)) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, inCCDC141and two low-frequency SNVs inCEP350andHDGFRP2. Functional follow-up implied that decreased expression ofREV3Lmay lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.
Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci
Erzurumluoglu A Mesut;Liu Mengzhen;Jackson Victoria E;Barnes Daniel R;Datta Gargi;Melbourne Carl A;Young Robin;Batini Chiara;Surendran Praveen;Jiang Tao;Adnan Sheikh Daud;Afaq Saima;Agrawal Arpana;Altmaier Elisabeth;Antoniou Antonis C;Asselbergs Folkert W;Baumbach Clemens;Bierut Laura;Bertelsen Sarah;Boehnke Michael;Bots Michiel L;Brazel David M;Chambers John C;ChangClaude Jenny;Chen Chu;Corley Janie;Chou YiLing;David Sean P;de Boer Rudolf A;de Leeuw Christiaan A;Dennis Joe G;Dominiczak Anna F;Dunning Alison M;Easton Douglas F;Eaton Charles;Elliott Paul;Evangelou Evangelos;Faul Jessica D;Foroud Tatiana;Goate Alison;Gong Jian;Grabe Hans J;Haessler Jeff;Haiman Christopher;Hallmans Goran;Hammerschlag Anke R;Harris Sarah E;Hattersley Andrew;Heath Andrew;Hsu Chris;Iacono William G;Kanoni Stavroula;Kapoor Manav;Kaprio Jaakko;Kardia Sharon L;Karpe Fredrik;Kontto Jukka;Kooner Jaspal S;Kooperberg Charles;Kuulasmaa Kari;Laakso Markku;Lai Dongbing;Langenberg Claudia;Le Nhung;Lettre Guillaume;Loukola Anu;Luan Jian'an;Madden Pamela A F;Mangino Massimo;Marioni Riccardo E;Marouli Eirini;Marten Jonathan;Martin Nicholas G;McGue Matt;Michailidou Kyriaki;Mihailov Evelin;Moayyeri Alireza;Moitry Marie;MuellerNurasyid Martina;Naheed Aliya;Nauck Matthias;Neville Matthew J;Nielsen Sune Fallgaard;North Kari;Perola Markus;Pharoah Paul D P;Pistis Giorgio;Polderman Tinca J;Posthuma Danielle;Poulter Neil;Qaiser Beenish;Rasheed Asif;Reiner Alex;Renstrom Frida;Rice John;Rohde Rebecca;Rolandsson Olov;Samani Nilesh J;Samuel Maria;Schlessinger David;Scholte Steven H;Scott Robert A;Sever Peter;Shao Yaming;Shrine Nick;Smith Jennifer A;Starr John M;Stirrups Kathleen;Stram Danielle;Stringham Heather M;Tachmazidou Ioanna;Tardif JeanClaude;Thompson Deborah J;Tindle Hilary A;Tragante Vinicius;Trompet Stella;Turcot Valerie;Tyrrell Jessica;Vaartjes Ilonca;van der Leij Andries R;van der Meer Peter;Varga Tibor V;Verweij Niek;Voelzke Henry;Wareham Nicholas J;Warren Helen R;Weir David R;Weiss Stefan;Wetherill Leah;Yaghootkar Hanieh;Yavas Ersin;Jiang Yu;Chen Fang;Zhan Xiaowei;Zhang Weihua;Zhao Wei;Zhao Wei;Zhou Kaixin;Amouyel Philippe;Blankenberg Stefan;Caulfield Mark J;Chowdhury Rajiv;Cucca Francesco;Deary Ian J;Deloukas Panos;Di Angelantonio Emanuele;Ferrario Marco;Ferrieres Jean;Franks Paul W;Frayling Tim M;Frossard Philippe;Hall Ian P;Hayward Caroline;Jansson JanHakan;Jukema J Wouter;Kee Frank;Mannisto Satu;Metspalu Andres;Munroe Patricia B;Nordestgaard Borge Gronne;Palmer Colin N A;Salomaa Veikko;Sattar Naveed;Spector Timothy;Strachan David Peter;van der Harst Pim;Zeggini Eleftheria;Saleheen Danish;Butterworth Adam S;Wain Louise V;Abecasis Goncalo R;Danesh John;Tobin Martin D;Vrieze Scott;Liu Dajiang J;Howson Joanna M M
2020
Abstract
Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations withP < 5 x 10(-8)in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 x 10(-8)) in the discovery samples. Ten novel SNVs, including rs12616219 nearTMEM182, were followed-up and five of them (rs462779 inREV3L, rs12780116 inCNNM2, rs1190736 inGPR101, rs11539157 inPJA1, and rs12616219 nearTMEM182) replicated at a Bonferroni significance threshold (P < 4.5 x 10(-3)) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, inCCDC141and two low-frequency SNVs inCEP350andHDGFRP2. Functional follow-up implied that decreased expression ofREV3Lmay lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/424356
Citazioni
ND
ND
77
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall'Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l'Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.