The optimized microalgae-based bioassay was preliminarily incorporated into a marine buoy for autonomous pre-screening of pesticides in coastal areas, demonstrating its suitability for real-time monitoring of marine water and quantitative evaluation of total biotoxicity.

The present study evaluates an optical bioassay based on green photosynthetic microalgae as a promising alternative for monitoring of relevant seawater pollutants. Photosystem II fluorescence parameters from several microalgae species were examined in the presence of three common marine pesticides that act as photosynthesis inhibitors. The three pollutants were detected within 10 min in concentrations between ng/L-mu g/L. The different algae species showed slightly diverse pesticide sensitivities, being Chlorella mirabilis the most sensitive one. Potential interferences due to oil-spill pollutants were discarded. The lipid content was characterized to identify microorganisms with suitable mechanisms that could facilitate stress acclimatization. C. mirabilis presented elevated content of unsaturated lipids, showing a promising potential for biosensing in saline stress conditions.

Fast pesticide pre-screening in marine environment using a green microalgae-based optical bioassay

Denaro Renata;Crisafi Francesca;
2018

Abstract

The present study evaluates an optical bioassay based on green photosynthetic microalgae as a promising alternative for monitoring of relevant seawater pollutants. Photosystem II fluorescence parameters from several microalgae species were examined in the presence of three common marine pesticides that act as photosynthesis inhibitors. The three pollutants were detected within 10 min in concentrations between ng/L-mu g/L. The different algae species showed slightly diverse pesticide sensitivities, being Chlorella mirabilis the most sensitive one. Potential interferences due to oil-spill pollutants were discarded. The lipid content was characterized to identify microorganisms with suitable mechanisms that could facilitate stress acclimatization. C. mirabilis presented elevated content of unsaturated lipids, showing a promising potential for biosensing in saline stress conditions.
2018
Istituto di Ricerca Sulle Acque - IRSA
Istituto per le Risorse Biologiche e le Biotecnologie Marine - IRBIM
The optimized microalgae-based bioassay was preliminarily incorporated into a marine buoy for autonomous pre-screening of pesticides in coastal areas, demonstrating its suitability for real-time monitoring of marine water and quantitative evaluation of total biotoxicity.
Bioassay
Pesticide
Photosynthesis
Microalga
Chlorella mirabilis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/424693
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 17
social impact