The present study examined the effects of a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate by a combination of electrospinning and spray, phase-inversion method for wound healing. In particular, the poly(ether)urethane layer was obtained using by a spray phase-inversion method and the fibrin fibers network were loaded with platelet lysate by electrospinning. The kinetics release and the bioactivity of growth factors released from platelet lysate-scaffold were investigated by ELISA and cell proliferation test using mouse fibroblasts, respectively. The in-vitro experiments demonstrated that a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate provides a sustained release of bioactive platelet-derived growth factors. The effect of a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate on wound healing in diabetic mouse (db/db) was also investigated. The application of the scaffold on full-thickness skin wounds significantly accelerated wound closure at day 14 post-surgery when compared to scaffold without platelet lysates or commercially available polyurethane film, and at the same level of growth factor-loaded scaffold. Histological analysis demonstrated an increased re-epithelialization and collagen deposition in platelet lysate and growth factor loaded scaffolds. The ability of bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate to promote in-vivo wound healing suggests its usefulness in clinical treatment of diabetic ulcers.

Bilayered Fibrin-Based Electrospun-Sprayed Scaffold Loaded with Platelet Lysate Enhances Wound Healing in a Diabetic Mouse Model

Losi Paola;Al Kayal Tamer;Foffa Ilenia;Cavallo Aida;Soldani Giorgio
2020

Abstract

The present study examined the effects of a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate by a combination of electrospinning and spray, phase-inversion method for wound healing. In particular, the poly(ether)urethane layer was obtained using by a spray phase-inversion method and the fibrin fibers network were loaded with platelet lysate by electrospinning. The kinetics release and the bioactivity of growth factors released from platelet lysate-scaffold were investigated by ELISA and cell proliferation test using mouse fibroblasts, respectively. The in-vitro experiments demonstrated that a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate provides a sustained release of bioactive platelet-derived growth factors. The effect of a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate on wound healing in diabetic mouse (db/db) was also investigated. The application of the scaffold on full-thickness skin wounds significantly accelerated wound closure at day 14 post-surgery when compared to scaffold without platelet lysates or commercially available polyurethane film, and at the same level of growth factor-loaded scaffold. Histological analysis demonstrated an increased re-epithelialization and collagen deposition in platelet lysate and growth factor loaded scaffolds. The ability of bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate to promote in-vivo wound healing suggests its usefulness in clinical treatment of diabetic ulcers.
2020
platelet lysate
fibrin
electrospinning
spray
phase-inversion
wound healing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/424805
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact