In the present article we report enhanced light absorption, tunable size-dependent blue shift, and efficient electron hole pairs generation in Ge nanoporous films (np-Ge) grown on Si. The Ge films are grown by sputtering and molecular beam epitaxy; subsequently, the nanoporous structure is obtained by Ge+ self-implantation. We show, by surface photovoltage spectroscopy measurements, blue shift of the optical energy gap and strong signal enhancement effects in the np-Ge films. The blue shift is related to quantum confinement effects at the wall separating the pore in the structure, the signal enhancement to multiple light-scattering events, which result in enhanced absorption. All these characteristics are highly stable with time. These findings demonstrate that nanoporous Ge films can be very promising for photovoltaic applications.

Optical Properties of Nanoporous Germanium Thin Films

Impellizzeri Giuliana;Miritello Maria;
2015

Abstract

In the present article we report enhanced light absorption, tunable size-dependent blue shift, and efficient electron hole pairs generation in Ge nanoporous films (np-Ge) grown on Si. The Ge films are grown by sputtering and molecular beam epitaxy; subsequently, the nanoporous structure is obtained by Ge+ self-implantation. We show, by surface photovoltage spectroscopy measurements, blue shift of the optical energy gap and strong signal enhancement effects in the np-Ge films. The blue shift is related to quantum confinement effects at the wall separating the pore in the structure, the signal enhancement to multiple light-scattering events, which result in enhanced absorption. All these characteristics are highly stable with time. These findings demonstrate that nanoporous Ge films can be very promising for photovoltaic applications.
2015
Istituto per la Microelettronica e Microsistemi - IMM
quantum confinement
light trapping
surface photovoltage
nanoporous germanium
photovoltaic applications
ion implantation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/424886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact