An easy method to prepare hydrophilic PES membranes with anti-fouling properties was developed by UV-polymerization of poly vinyl pirrolidone (PVP) on membrane surfaces. The modified membrane surfaces were analyzed by ATR-FTIR, and the new hydrophilic nature of the membranes was determined by contact angle measurements. The novel membranes were prepared using Rhodiasolv® Polarclean as a green solvent and compared with a control PES membrane, without the exposure at the hydrophilization procedure. The influences of the UV lamp distance (15 and 30 cm) and the exposure time (0 cm to 60 cm) were evaluated. All membranes were characterized in terms of surface morphology, porosity, pore size, and pure water permeability (PWP). The treated membranes resulted in an increase in hydrophilicity and in improved performances in terms of PWP and foulant rejection. In particular, an anti-fouling test was performed using a solution of 100 mg/L of humic acid (HA) as a model foulant. The UV-treated membrane efficiency, compared with a commercial PES membrane, showed a recovery of about 97%, confirming that these membranes can be applied in wastewater treatment.
Enhanced Anti-Fouling Behavior and Performance of PES Membrane by UV Treatment
Francesca Russo;Claudia Ursino;Alberto Figoli
2021
Abstract
An easy method to prepare hydrophilic PES membranes with anti-fouling properties was developed by UV-polymerization of poly vinyl pirrolidone (PVP) on membrane surfaces. The modified membrane surfaces were analyzed by ATR-FTIR, and the new hydrophilic nature of the membranes was determined by contact angle measurements. The novel membranes were prepared using Rhodiasolv® Polarclean as a green solvent and compared with a control PES membrane, without the exposure at the hydrophilization procedure. The influences of the UV lamp distance (15 and 30 cm) and the exposure time (0 cm to 60 cm) were evaluated. All membranes were characterized in terms of surface morphology, porosity, pore size, and pure water permeability (PWP). The treated membranes resulted in an increase in hydrophilicity and in improved performances in terms of PWP and foulant rejection. In particular, an anti-fouling test was performed using a solution of 100 mg/L of humic acid (HA) as a model foulant. The UV-treated membrane efficiency, compared with a commercial PES membrane, showed a recovery of about 97%, confirming that these membranes can be applied in wastewater treatment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.