The water permeability of various liposome membranes has been determined at 298 K by measuring the NMR longitudinal water proton relaxation rate of vesicles encapsulating the clinically approved Gd-HPDO3A complex (HPDO3A = 10-(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid). Two basic formulations based on DPPC (dipalmitoylphosphatidylcholine) and POPC (palmitoyl-oleylphosphatidylcholine) phospholipids were selected and investigated. Furthermore, the permeability changes caused by the membrane incorporation of amphiphiles like cholesterol and/or metal complexes of interest for designing improved liposome-based MRI contrast agents, were also investigated. The incorporation of cholesterol and metal complexes bearing C18 saturated chains in POPC-based liposomes reduces the water diffusivity across the membrane bilayer. On the contrary, the incorporation of a macrocyclic metal complex bearing four C12 alkylic chains, one for each coordination arm of the ligand, considerably enhances the water permeability in DPPC-based liposomes. Finally, it is reported that the permeability of POPC-based bilayer is increased when the liposomes are subjected to an osmotic stress. (C) 2008 Elsevier Inc. All rights reserved.
Determination of water permeability of paramagnetic liposomes of interest in MRI field
Carrera Carla;
2008
Abstract
The water permeability of various liposome membranes has been determined at 298 K by measuring the NMR longitudinal water proton relaxation rate of vesicles encapsulating the clinically approved Gd-HPDO3A complex (HPDO3A = 10-(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid). Two basic formulations based on DPPC (dipalmitoylphosphatidylcholine) and POPC (palmitoyl-oleylphosphatidylcholine) phospholipids were selected and investigated. Furthermore, the permeability changes caused by the membrane incorporation of amphiphiles like cholesterol and/or metal complexes of interest for designing improved liposome-based MRI contrast agents, were also investigated. The incorporation of cholesterol and metal complexes bearing C18 saturated chains in POPC-based liposomes reduces the water diffusivity across the membrane bilayer. On the contrary, the incorporation of a macrocyclic metal complex bearing four C12 alkylic chains, one for each coordination arm of the ligand, considerably enhances the water permeability in DPPC-based liposomes. Finally, it is reported that the permeability of POPC-based bilayer is increased when the liposomes are subjected to an osmotic stress. (C) 2008 Elsevier Inc. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.