Energy partitioning and plant growth are mediated in part by a type I H+-pumping pyrophosphatase (H+-PPase). A canonical role for this transporter has been demonstrated at the tonoplast where it serves a job-sharing role with V-ATPase in vacuolar acidification. Here, we investigated whether the plant H+-PPase from Arabidopsis also functions in "reverse mode" to synthesize PPi using the transmembrane H+ gradient. Using patch-clamp recordings on Arabidopsis vacuoles, we observed inward currents upon P-i application on the cytosolic side. These currents were strongly reduced in vacuoles from two independent H+-PPase mutant lines (vhp1-1 and fugu5-1) lacking the classical PPi-induced outward currents related to H+ pumping, whereas they were significantly larger in vacuoles with engineered heightened expression of the H+-PPase. Current amplitudes related to reverse-mode H+ transport depended on the membrane potential, cytosolic P-i concentration, and magnitude of the pH gradient across the tonoplast. Of note, experiments on vacuolar membrane-enriched vesicles isolated from yeast expressing the Arabidopsis H+-PPase (AVP1) demonstrated P-i-dependent PPi synthase activity in the presence of a pH gradient. Our work establishes that a plant H+-PPase can operate as a PPi synthase beyond its canonical role in vacuolar acidification and cytosolic PPi scavenging. We propose that the PPi synthase activity of H+-PPase contributes to a cascade of events that energize plant growth.

The flip side of the Arabidopsis type I proton-pumping pyrophosphatase (AVP1): Using a transmembrane H+ gradient to synthesize pyrophosphate

ScholzStarke Joachim;
2019

Abstract

Energy partitioning and plant growth are mediated in part by a type I H+-pumping pyrophosphatase (H+-PPase). A canonical role for this transporter has been demonstrated at the tonoplast where it serves a job-sharing role with V-ATPase in vacuolar acidification. Here, we investigated whether the plant H+-PPase from Arabidopsis also functions in "reverse mode" to synthesize PPi using the transmembrane H+ gradient. Using patch-clamp recordings on Arabidopsis vacuoles, we observed inward currents upon P-i application on the cytosolic side. These currents were strongly reduced in vacuoles from two independent H+-PPase mutant lines (vhp1-1 and fugu5-1) lacking the classical PPi-induced outward currents related to H+ pumping, whereas they were significantly larger in vacuoles with engineered heightened expression of the H+-PPase. Current amplitudes related to reverse-mode H+ transport depended on the membrane potential, cytosolic P-i concentration, and magnitude of the pH gradient across the tonoplast. Of note, experiments on vacuolar membrane-enriched vesicles isolated from yeast expressing the Arabidopsis H+-PPase (AVP1) demonstrated P-i-dependent PPi synthase activity in the presence of a pH gradient. Our work establishes that a plant H+-PPase can operate as a PPi synthase beyond its canonical role in vacuolar acidification and cytosolic PPi scavenging. We propose that the PPi synthase activity of H+-PPase contributes to a cascade of events that energize plant growth.
2019
Istituto di Biofisica - IBF
Arabidopsis thaliana
proton pump
Saccharomyces cerevisiae
vacuole
patch clamp
H+ pumping pyrophosphatase
pH gradient
PPi synthase
pyrophosphate (PPi)
tonoplast
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/425312
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact