Aim The development of approaches to predict the distribution and potential expansion of invasive species is still an open challenge. Here our goal is to improve the modelling procedure for marine invaders by coupling Species Distribution Models (SDMs) with an analysis of their univariate niche dynamics. In particular, we tested for the first time whether choosing model predictors among the stable niche dimensions was effective in improving predictions of invasive species expansion. Location Mediterranean Sea Taxon Dusky spinefoot, Siganus luridus. Methods We analysed the univariate niche dynamics for S. luridus across its native and invaded ranges, by applying a standardized framework that allowed the identification of cases of niche stability or shift. We compared inter-range transferability of SDMs fitted with different combinations of labile or stable predictors. Finally, we evaluated interactions in SDM settings (calibration area, model technique and predictors set) on models predictive ability, using independent data from the most recent phase of invasion. Results We detected a pattern of niche stability for several variables, especially salinity and bathymetry, which positively influenced model inter-ranges transferability: when the models calibrated in the native range include only stable niche axes, predictive ability is improved. We also identified a shift toward lower surface temperatures in the introduced range, which were almost never experienced by the species before invasion. The model calibrated within the combined ranges was the most ecologically congruent. Also, models calibrated in the invaded range allowed a correct prediction of range expansion, with the predicted suitable areas only slightly underestimated. Main conclusions We provide the first evidence that using conserved predictors in SDMs improves inter-range projections of expanding invasive species. Variable selection, calibration area and modelling technique all matter when modelling invasive species, with important interaction effects. We provide guidelines on how to improve SDMs applications in biological invasion research. This dataset compiles georeferenced occurrence records of the dusky spinefootSiganus luridus (Ruppell, 1829) (PiscesActinopterygii,Siganidae) inits invasive (Mediterranean) and native range. Observations downloaded from the databasesOBIS andGBIF were reported with their ID number. All the other records were derived from published literature or from other scientific sources, previously validaded by the autors.The dataset is divided in two groups, the 'train-set' and the 'test-set', according to the methods explained in the associated paper. Copyright: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication

Integrating univariate niche dynamics in species distribution models: a step forward for marine research on biological invasions

D'Amen Manuela;Azzurro Ernesto
2020

Abstract

Aim The development of approaches to predict the distribution and potential expansion of invasive species is still an open challenge. Here our goal is to improve the modelling procedure for marine invaders by coupling Species Distribution Models (SDMs) with an analysis of their univariate niche dynamics. In particular, we tested for the first time whether choosing model predictors among the stable niche dimensions was effective in improving predictions of invasive species expansion. Location Mediterranean Sea Taxon Dusky spinefoot, Siganus luridus. Methods We analysed the univariate niche dynamics for S. luridus across its native and invaded ranges, by applying a standardized framework that allowed the identification of cases of niche stability or shift. We compared inter-range transferability of SDMs fitted with different combinations of labile or stable predictors. Finally, we evaluated interactions in SDM settings (calibration area, model technique and predictors set) on models predictive ability, using independent data from the most recent phase of invasion. Results We detected a pattern of niche stability for several variables, especially salinity and bathymetry, which positively influenced model inter-ranges transferability: when the models calibrated in the native range include only stable niche axes, predictive ability is improved. We also identified a shift toward lower surface temperatures in the introduced range, which were almost never experienced by the species before invasion. The model calibrated within the combined ranges was the most ecologically congruent. Also, models calibrated in the invaded range allowed a correct prediction of range expansion, with the predicted suitable areas only slightly underestimated. Main conclusions We provide the first evidence that using conserved predictors in SDMs improves inter-range projections of expanding invasive species. Variable selection, calibration area and modelling technique all matter when modelling invasive species, with important interaction effects. We provide guidelines on how to improve SDMs applications in biological invasion research. This dataset compiles georeferenced occurrence records of the dusky spinefootSiganus luridus (Ruppell, 1829) (PiscesActinopterygii,Siganidae) inits invasive (Mediterranean) and native range. Observations downloaded from the databasesOBIS andGBIF were reported with their ID number. All the other records were derived from published literature or from other scientific sources, previously validaded by the autors.The dataset is divided in two groups, the 'train-set' and the 'test-set', according to the methods explained in the associated paper. Copyright: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication
2020
Istituto per le Risorse Biologiche e le Biotecnologie Marine - IRBIM
species distribution modeling
climate change
invasive species
mediterranean
File in questo prodotto:
File Dimensione Formato  
prod_447745-doc_161338.pdf

solo utenti autorizzati

Descrizione: 2019 D Amen and Azzurro
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 953.98 kB
Formato Adobe PDF
953.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/425431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact