Hot electrons dominate the ultrafast (~fs-ps) optical and electronic properties of metals and semiconductors, and they are exploited in a variety of applications including photovoltaics and photodetection. We perform power-dependent third-harmonic generation measurements on gated single-layer graphene and detect a significant deviation from the cubic power law expected for a third-harmonic generation process. We assign this to the presence of hot electrons. Our results indicate that the performance of nonlinear photonics devices based on graphene, such as optical modulators and frequency converters, can be affected by changes in the electronic temperature, which might occur due to an increase in absorbed optical power or Joule heating.

Hot Electrons Modulation of Third-Harmonic Generation in Graphene

Pogna EAA;
2019

Abstract

Hot electrons dominate the ultrafast (~fs-ps) optical and electronic properties of metals and semiconductors, and they are exploited in a variety of applications including photovoltaics and photodetection. We perform power-dependent third-harmonic generation measurements on gated single-layer graphene and detect a significant deviation from the cubic power law expected for a third-harmonic generation process. We assign this to the presence of hot electrons. Our results indicate that the performance of nonlinear photonics devices based on graphene, such as optical modulators and frequency converters, can be affected by changes in the electronic temperature, which might occur due to an increase in absorbed optical power or Joule heating.
2019
graphene
third harmonics generation
nonlinear optics
hot electrons
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/425521
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? ND
social impact