The development of a multidisciplinary design optimization (MDO) architecture for high-fidelity fluid-structure interaction (FSI) problems is presented with preliminary application to a NACA 0009 3D hydrofoil in metal and carbon-fiber reinforced plastic materials. The MDO methodology and FSI benchmark solution are presented and discussed. The computational cost of the MDO is reduced by performing a design space dimensionality reduction beforehand and integrating into the architecture a variable level of coupling between disciplines, a surrogate model, and an adaptive sampling technique. The optimization is performed using a heuristic global derivative-free algorithm. The MDO method is demonstrated by application to an analytical test problem. Current stage of research includes preliminary test problem optimization, validation of the hydrofoil FSI against experimental data, and design space assessment and dimensionality reduction for the hydrofoil model.

Towards the high-fidelity multidisciplinary design optimization of a 3D composite material hydrofoil

Diez M;
2017

Abstract

The development of a multidisciplinary design optimization (MDO) architecture for high-fidelity fluid-structure interaction (FSI) problems is presented with preliminary application to a NACA 0009 3D hydrofoil in metal and carbon-fiber reinforced plastic materials. The MDO methodology and FSI benchmark solution are presented and discussed. The computational cost of the MDO is reduced by performing a design space dimensionality reduction beforehand and integrating into the architecture a variable level of coupling between disciplines, a surrogate model, and an adaptive sampling technique. The optimization is performed using a heuristic global derivative-free algorithm. The MDO method is demonstrated by application to an analytical test problem. Current stage of research includes preliminary test problem optimization, validation of the hydrofoil FSI against experimental data, and design space assessment and dimensionality reduction for the hydrofoil model.
2017
Istituto di iNgegneria del Mare - INM (ex INSEAN)
9788494690983
Multidisciplinary design optimization
Fluid structure interaction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/425551
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 0
social impact