Very collimated bunches of high energy electrons have been produced by focusing super-intense femtosecond laser pulses in submillimeter under-dense plasmas. The density of the plasma, preformed with the laser exploding-foil technique, was mapped using Nomarski interferometry. The electron beam was fully characterized: up to 10^9 electrons per shot were accelerated, most of which in a beam of aperture below 10^-3 sterad, with energies up to 40 MeV. These measurements, which are well modeled by three-dimensional numerical simulations, validate a reliable method to generate ultrashort and ultracollimated electron bunches.

Production of ultra-collimated bunches of multi-MeV electrons by 35-fs laser pulses propagating in exploding-foil plasmas

Giulietti A;Gizzi LA;
2002-01-01

Abstract

Very collimated bunches of high energy electrons have been produced by focusing super-intense femtosecond laser pulses in submillimeter under-dense plasmas. The density of the plasma, preformed with the laser exploding-foil technique, was mapped using Nomarski interferometry. The electron beam was fully characterized: up to 10^9 electrons per shot were accelerated, most of which in a beam of aperture below 10^-3 sterad, with energies up to 40 MeV. These measurements, which are well modeled by three-dimensional numerical simulations, validate a reliable method to generate ultrashort and ultracollimated electron bunches.
2002
Istituto per i Processi Chimico-Fisici - IPCF
High Power Lasers
Plasma Physics
Particle acceleratio
Medical Physics
Material Science
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/42568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? ND
social impact