Cells of the facultative photosynthetic bacterium Rhodobacter capsulatus exploit the simultaneous presence in the cultural medium of the toxic oxyanion tellurite (TeO32-) and the redox mediator lawsone (2-hydroxy-1,4-naphthoquinone) by reducing tellurite to metal Te-0 nanoprecipitates (TeNPs) outside the cells. Here we have studied the mechanism by which lawsone interacts with metabolically active cells and analysed both structure and composition of the TeNPs collected from the growth medium of phototrophycally grown R. capsulatus. High Resolution Transmission Electron Microscopy (HR-TEM) images and Energy-Dispersive X-ray (EDX) microanalysis of TeNPs showed a central core of polycrystalline tellurium interspersed in an organic matrix with a predominant protein-based composition. The main proteins from Te-0 nanostructures were identified by Liquid Chromatography tandem-Mass Spectrometry and were all correlated with the cell outer membrane composition. The interaction of reduced lawsone with tellurite and with the bacterial cells was probed by Cyclic Voltammetry and Scanning ElectroChemical Microscopy (SECM). We concluded that lawsone is required for the reduction of tellurite to metal Te-0 in a reaction mechanism dependent on reducing equivalents deriving from the cell photosynthetic metabolism. SECM experiments demonstrate that lawsone, by diffusing inside the bacterial cells, is effectively available at the membrane site of the photosynthetic electron transport chain. (C) 2020 Published by Elsevier B.V.

Structural and electrochemical characterization of lawsone-dependent production of tellurium-metal nanoprecipitates by photosynthetic cells of Rhodobacter capsulatus

Brucale Marco;Ortolani Luca;
2020

Abstract

Cells of the facultative photosynthetic bacterium Rhodobacter capsulatus exploit the simultaneous presence in the cultural medium of the toxic oxyanion tellurite (TeO32-) and the redox mediator lawsone (2-hydroxy-1,4-naphthoquinone) by reducing tellurite to metal Te-0 nanoprecipitates (TeNPs) outside the cells. Here we have studied the mechanism by which lawsone interacts with metabolically active cells and analysed both structure and composition of the TeNPs collected from the growth medium of phototrophycally grown R. capsulatus. High Resolution Transmission Electron Microscopy (HR-TEM) images and Energy-Dispersive X-ray (EDX) microanalysis of TeNPs showed a central core of polycrystalline tellurium interspersed in an organic matrix with a predominant protein-based composition. The main proteins from Te-0 nanostructures were identified by Liquid Chromatography tandem-Mass Spectrometry and were all correlated with the cell outer membrane composition. The interaction of reduced lawsone with tellurite and with the bacterial cells was probed by Cyclic Voltammetry and Scanning ElectroChemical Microscopy (SECM). We concluded that lawsone is required for the reduction of tellurite to metal Te-0 in a reaction mechanism dependent on reducing equivalents deriving from the cell photosynthetic metabolism. SECM experiments demonstrate that lawsone, by diffusing inside the bacterial cells, is effectively available at the membrane site of the photosynthetic electron transport chain. (C) 2020 Published by Elsevier B.V.
2020
Istituto per la Microelettronica e Microsistemi - IMM
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Lawsone
Tellurite
Tellurium nanoprecipitates
Rhodobacter capsulatus
Scanning ElectroChemical Microscopy (SECM)
File in questo prodotto:
File Dimensione Formato  
prod_449435-doc_174590.pdf

solo utenti autorizzati

Descrizione: Structural and electrochemical characterization [...]
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/425877
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact