All possible combinations of stable dihedral values have been considered in vacuo at the B3LYP/6-31G* level for 3,9-dihydroxy-4,8-diprenylpterocarpan (erybraedin C), whose hydroxy out-out conformation had been examined earlier together with the conformational preferences of 3,9-dimethoxy-4- prenylpterocarpan (bitucarpin A) at the same level (Phys. Chem. Chem. Phys. 2004, 6, 2849). The structure with O5 trans with respect to H6a (Ot) is about 2 kcal/mol less stable in vacuo than that with one of the H6 trans to it (Ht); in aqueous solution its energy gap is nearly conserved. The in-in arrangement of the hydroxyl groups of erybraedin turns out to be preferred in vacuo (even considering zero point and thermal effects), where pseudo H-bonds are formed between hydroxy hydrogens and ð electron distributions of prenyl groups. The continuum solvent effect (water) at the IEF-PCM/B3LYP/6-31G* level on the relative stability of the various rotamers is very limited both on bitucarpin and erybraedin. Considering the dihydrated derivatives, significant differences in the solvation energy are found between the distinct hydration sites, increasing in the order: methoxy O, ring O, hydroxy O, and hydroxy H. In hydroxy-water interactions, in fact, water prefers to behave as an H-bond acceptor unless nearby bulky groups prevent its approach. Interestingly enough, a bridging water molecule between the hydroxy H of erybraedin and the prenyl group can be found. The inclusion of BSSE corrections in hydroxy-water interactions decidedly favors out-out hydrated arrangements, followed by out-in and in-out ones. Bulk solvent effects with IEF-PCM about the dihydrated systems almost invert the stability order found in vacuo. When a four-water cluster is considered using QM methods, waters gather in H-bonded pairs around the solute OH groups. MD simulations, carried out on a pterocarpan solute (J. Phys. Chem. B 2005, 109, 16918), supply water adducts consistent with a liquid state that have also been embedded in the continuum solvent.

The Conformational Landscape of (R,R)-Pterocarpans with Biological Activity in Vacuo and in Aqueous Solution (PCM and/or Water Clusters)

Alagona G;Ghio C
2006

Abstract

All possible combinations of stable dihedral values have been considered in vacuo at the B3LYP/6-31G* level for 3,9-dihydroxy-4,8-diprenylpterocarpan (erybraedin C), whose hydroxy out-out conformation had been examined earlier together with the conformational preferences of 3,9-dimethoxy-4- prenylpterocarpan (bitucarpin A) at the same level (Phys. Chem. Chem. Phys. 2004, 6, 2849). The structure with O5 trans with respect to H6a (Ot) is about 2 kcal/mol less stable in vacuo than that with one of the H6 trans to it (Ht); in aqueous solution its energy gap is nearly conserved. The in-in arrangement of the hydroxyl groups of erybraedin turns out to be preferred in vacuo (even considering zero point and thermal effects), where pseudo H-bonds are formed between hydroxy hydrogens and ð electron distributions of prenyl groups. The continuum solvent effect (water) at the IEF-PCM/B3LYP/6-31G* level on the relative stability of the various rotamers is very limited both on bitucarpin and erybraedin. Considering the dihydrated derivatives, significant differences in the solvation energy are found between the distinct hydration sites, increasing in the order: methoxy O, ring O, hydroxy O, and hydroxy H. In hydroxy-water interactions, in fact, water prefers to behave as an H-bond acceptor unless nearby bulky groups prevent its approach. Interestingly enough, a bridging water molecule between the hydroxy H of erybraedin and the prenyl group can be found. The inclusion of BSSE corrections in hydroxy-water interactions decidedly favors out-out hydrated arrangements, followed by out-in and in-out ones. Bulk solvent effects with IEF-PCM about the dihydrated systems almost invert the stability order found in vacuo. When a four-water cluster is considered using QM methods, waters gather in H-bonded pairs around the solute OH groups. MD simulations, carried out on a pterocarpan solute (J. Phys. Chem. B 2005, 109, 16918), supply water adducts consistent with a liquid state that have also been embedded in the continuum solvent.
2006
Istituto per i Processi Chimico-Fisici - IPCF
Continuum solvent
discrete solvation
BSSE
H-bond effects
B3LYP/6-31G*
File in questo prodotto:
File Dimensione Formato  
prod_39326-doc_545.pdf

non disponibili

Descrizione: The Conformational Landscape of (R,R)-Pterocarpans with Biological Activity in Vacuo and in Aqueous Solution (PCM and/or Water Clusters)
Dimensione 383.04 kB
Formato Adobe PDF
383.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/42591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact