Quantum Computing represents the next big step towards speed boost in computation, which promises major breakthroughs in several disciplines including Artificial Intelligence. This paper investigates the performance of a genetic algorithm to optimize the realization (compilation) of nearest-neighbor compliant quantum circuits. Currrent technological limitations (e.g., decoherence effect) impose that the overall duration (makespan) of the quantum circuit realization be minimized, and therefore the makespan-minimization problem of compiling quantum algorithms on present or future quantum machines is dragging increasing attention in the AI community. In our genetic algorithm, a solution is built utilizing a novel chromosome encoding where each gene controls the iterative selection of a quantum gate to be inserted in the solution, over a lexicographic double-key ranking returned by a heuristic function recently published in the literature. Our algorithm has been tested on a set of quantum circuit benchmark instances of increasing sizes available from the recent literature. We demonstrate that our genetic approach obtains very encouraging results that outperform the solutions obtained in previous research against the same benchmark, succeeding in significantly improving the makespan values for a great number of instances.

An Innovative Genetic Algorithm for the Quantum Circuit Compilation Problem

Rasconi Riccardo;Oddi Angelo
2019

Abstract

Quantum Computing represents the next big step towards speed boost in computation, which promises major breakthroughs in several disciplines including Artificial Intelligence. This paper investigates the performance of a genetic algorithm to optimize the realization (compilation) of nearest-neighbor compliant quantum circuits. Currrent technological limitations (e.g., decoherence effect) impose that the overall duration (makespan) of the quantum circuit realization be minimized, and therefore the makespan-minimization problem of compiling quantum algorithms on present or future quantum machines is dragging increasing attention in the AI community. In our genetic algorithm, a solution is built utilizing a novel chromosome encoding where each gene controls the iterative selection of a quantum gate to be inserted in the solution, over a lexicographic double-key ranking returned by a heuristic function recently published in the literature. Our algorithm has been tested on a set of quantum circuit benchmark instances of increasing sizes available from the recent literature. We demonstrate that our genetic approach obtains very encouraging results that outperform the solutions obtained in previous research against the same benchmark, succeeding in significantly improving the makespan values for a great number of instances.
2019
978-1-57735-809-1
Planning
Scheduling
Quantum Compilation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/425914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 16
social impact