Vortex dynamics is strongly connected with the mechanisms responsible for the photon detection of superconducting devices. Indeed, the local suppression of superconductivity by photon absorption may trigger vortex nucleation and motion effects, which can make the superconducting state unstable. In addition, scaling down the thickness of the superconducting films and/or the width of the bridge geometry can strongly influence the transport properties of superconducting films, e.g. affecting its critical current as well as its switching current into the normal state. Understanding such instability can boost the performances of those superconducting devices based on nanowire geometries. We present an experimental study on the resistive switching in NbN and NbTiN ultra-thin films with a thickness of few nanometers. Despite both films were patterned with the same microbridge geometry, the two superconducting materials show different behaviors at very low applied magnetic fields. A comparison with other low temperature superconducting materials outlines the influence of geometry effects on the superconducting transport properties of these materials particularly useful for devices applications.
Geometry Effects on Switching Currents in Superconducting Ultra Thin Films
Leo A;Nigro A;Pace S;Guarino A;Martucciello N;Grimaldi G;
2017
Abstract
Vortex dynamics is strongly connected with the mechanisms responsible for the photon detection of superconducting devices. Indeed, the local suppression of superconductivity by photon absorption may trigger vortex nucleation and motion effects, which can make the superconducting state unstable. In addition, scaling down the thickness of the superconducting films and/or the width of the bridge geometry can strongly influence the transport properties of superconducting films, e.g. affecting its critical current as well as its switching current into the normal state. Understanding such instability can boost the performances of those superconducting devices based on nanowire geometries. We present an experimental study on the resistive switching in NbN and NbTiN ultra-thin films with a thickness of few nanometers. Despite both films were patterned with the same microbridge geometry, the two superconducting materials show different behaviors at very low applied magnetic fields. A comparison with other low temperature superconducting materials outlines the influence of geometry effects on the superconducting transport properties of these materials particularly useful for devices applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.