In the context of ionic transport in solids, the variation of a migration barrier height under electric fields is traditionally assumed to be equal to the classical electric work of a point charge that carries the transport charge. However, how reliable is this phenomenological model and how does it fare with respect to Modern Theory of Polarization? In this work, we show that such a classical picture does not hold in general as collective dipole effects may be critical. Such effects are unraveled by an appropriate polarization decomposition and by an expression that we derive, which defines the equivalent polarization-work charge. The equivalent polarization-work charge is not equal neither to the transported charge, nor to the Born effective charge of the migrating atom alone, but it is defined by the total polarization change at the transition state. Our findings are illustrated by oxygen charged defects in MgO and in SiO2. Ionic transport in solids is important for applications including rapid access memories and ion-based batteries. Here, the authors introduce polarization work contributions from the migrating ion and its environment, demonstrating the representative profile is given by a unique charge parameter.

Collective dipole effects in ionic transport under electric fields

Salles, N.;Martin Samos Colomer, L.;de Gironcoli, S.;Giacomazzi, L.;
2020

Abstract

In the context of ionic transport in solids, the variation of a migration barrier height under electric fields is traditionally assumed to be equal to the classical electric work of a point charge that carries the transport charge. However, how reliable is this phenomenological model and how does it fare with respect to Modern Theory of Polarization? In this work, we show that such a classical picture does not hold in general as collective dipole effects may be critical. Such effects are unraveled by an appropriate polarization decomposition and by an expression that we derive, which defines the equivalent polarization-work charge. The equivalent polarization-work charge is not equal neither to the transported charge, nor to the Born effective charge of the migrating atom alone, but it is defined by the total polarization change at the transition state. Our findings are illustrated by oxygen charged defects in MgO and in SiO2. Ionic transport in solids is important for applications including rapid access memories and ion-based batteries. Here, the authors introduce polarization work contributions from the migrating ion and its environment, demonstrating the representative profile is given by a unique charge parameter.
2020
Istituto Officina dei Materiali - IOM -
ionic transport
electric fields
cabrera-mott
collective dipole effects
polarizability
File in questo prodotto:
File Dimensione Formato  
s41467-020-17173-w.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/426093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact