In the Mediterranean Sea unique environmental characteristics and sensitive assets coexist with intense maritime traffic that is represented by frequent daily passages of vessels along the main waterways. In order to assess the risk of oil stranding in case of at-sea emergencies and provide key products for environmental agencies or policymakers preparedness, a geographically relocatable, operational numerical system is implemented and tested. The system relies on the application of oceanographic and particle tracking models and is able to provide, on a high-resolution and unstructured computational grid, a three-days forecast of those variables known as the main drivers of oil slicks at sea. The risk of potential oil stranding is computed through a combination of anthropogenic hazard and shoreline vulnerability. The sources of hazard vary on time and space in relation to local maritime vessel traffic. The shoreline vulnerability is based on the current knowledge of slope, main grain size, geology of rocks and occurrence of manmade structures at coast. The operational system is enriched by a web graphical user interface and includes automatic and on-demand working modes. Its functionality is demonstrated in the Strait of Bonifacio (western Mediterranean Sea), area with a high potential risk of oil stranding due to an intense maritime traffic. Risk assessment is hence computed for a test year, the 2018. Critical values of risk are found in correspondence of long stretches of littoral while many of them are currently characterized by a low anthropogenic pressure. The results emphasize the geomorphological features of the shorelines as reducing or amplifying factors to any potential impact of oil stranding at coast.

An operational numerical system for oil stranding risk assessment in a high-density vessel traffic area

Giovanni Quattrocchi;Simone Simeone;Andrea Pes;Roberto Sorgente;Alberto Ribotti;Andrea Cucco
2021

Abstract

In the Mediterranean Sea unique environmental characteristics and sensitive assets coexist with intense maritime traffic that is represented by frequent daily passages of vessels along the main waterways. In order to assess the risk of oil stranding in case of at-sea emergencies and provide key products for environmental agencies or policymakers preparedness, a geographically relocatable, operational numerical system is implemented and tested. The system relies on the application of oceanographic and particle tracking models and is able to provide, on a high-resolution and unstructured computational grid, a three-days forecast of those variables known as the main drivers of oil slicks at sea. The risk of potential oil stranding is computed through a combination of anthropogenic hazard and shoreline vulnerability. The sources of hazard vary on time and space in relation to local maritime vessel traffic. The shoreline vulnerability is based on the current knowledge of slope, main grain size, geology of rocks and occurrence of manmade structures at coast. The operational system is enriched by a web graphical user interface and includes automatic and on-demand working modes. Its functionality is demonstrated in the Strait of Bonifacio (western Mediterranean Sea), area with a high potential risk of oil stranding due to an intense maritime traffic. Risk assessment is hence computed for a test year, the 2018. Critical values of risk are found in correspondence of long stretches of littoral while many of them are currently characterized by a low anthropogenic pressure. The results emphasize the geomorphological features of the shorelines as reducing or amplifying factors to any potential impact of oil stranding at coast.
2021
Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino - IAS
Operational Oceanography
Risk Assessment
Geomorphology
oil spill
numerical modelling
web graphical user interface
Particle tracking model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/426302
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact