Pim1 belongs to a family of serine/threonine kinases, which is involved in the control of cell growth, differentiation, and apoptosis. Pim1 plays a pivotal role in cytokine signaling and is implicated in the development of a large number of tumors, representing a very attractive target for anticancer therapy. In this work, we applied a virtual screening protocol aimed at identifying small molecules able to inhibit Pim1 activity. The search of novel inhibitors was performed through a structure-based molecular modeling approach, taking advantage of the availability of the three-dimensional crystal structure of inhibitors bound to Pim1. Starting from the knowledge of protein-ligand complexes, the software LigandScout was used to generate pharmacophoric models, in turn used as queries to perform a virtual screening of databases, followed by docking experiments. As a result, a restricted set of candidates for biological testing was identified. Finally, among the six compounds selected as potential inhibitors of Pim1, two candidates endowed with a significant activity against Pim1 emerged. Interestingly, one of these compounds has a chemical scaffold different from inhibitors previously identified.

Indolyl-pyrrolone as a new scaffold for Pim1 inhibitors

Olla S;
2009

Abstract

Pim1 belongs to a family of serine/threonine kinases, which is involved in the control of cell growth, differentiation, and apoptosis. Pim1 plays a pivotal role in cytokine signaling and is implicated in the development of a large number of tumors, representing a very attractive target for anticancer therapy. In this work, we applied a virtual screening protocol aimed at identifying small molecules able to inhibit Pim1 activity. The search of novel inhibitors was performed through a structure-based molecular modeling approach, taking advantage of the availability of the three-dimensional crystal structure of inhibitors bound to Pim1. Starting from the knowledge of protein-ligand complexes, the software LigandScout was used to generate pharmacophoric models, in turn used as queries to perform a virtual screening of databases, followed by docking experiments. As a result, a restricted set of candidates for biological testing was identified. Finally, among the six compounds selected as potential inhibitors of Pim1, two candidates endowed with a significant activity against Pim1 emerged. Interestingly, one of these compounds has a chemical scaffold different from inhibitors previously identified.
2009
Istituto di Ricerca Genetica e Biomedica - IRGB
Molecular dockingPim1 kinaseInhibitorPharmacophore modelingCommercially available compounds
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/426451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact