There is an incipient necessity and interest of generating sustainable materials for application in green buildings. In this study, the capability of Posidonia Oceanica seagrass, a biomass by-product from the Mediterranean coastlines, is analysed as a reinforcement material in adobe bricks. For this purpose, earthen specimens with these sea-plant fibres were compared with the most traditional additives for this purpose, i.e. straw-based adobes. Both biomass fibres were included with different lengths and quantities. First, to understand their behaviour, the fibres were evaluated; water absorption and tensile strength tests were performed. Test specimens themselves were subjected to mechanical and thermal tests as well as measuring dimensional changes. Tested as fibres, straw presented higher tensile resistance and water absorption than seagrass; but tested within adobe specimens, straw containing samples had worse mechanical behaviour than those containing seagrass. Specially, adobe with Posidonia Ocenaica seagrass fibres with their natural long length showed to be the most suitable in terms of mechanical behaviour. Furthermore, good thermal conductivity results were achieved with this level of biomass reinforcement, generating a sustainable and value-added construction product. Published by Elsevier Ltd.

Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization

Chiodo Vitaliano;Maisano Susanna;Frazzica Andrea;
2020

Abstract

There is an incipient necessity and interest of generating sustainable materials for application in green buildings. In this study, the capability of Posidonia Oceanica seagrass, a biomass by-product from the Mediterranean coastlines, is analysed as a reinforcement material in adobe bricks. For this purpose, earthen specimens with these sea-plant fibres were compared with the most traditional additives for this purpose, i.e. straw-based adobes. Both biomass fibres were included with different lengths and quantities. First, to understand their behaviour, the fibres were evaluated; water absorption and tensile strength tests were performed. Test specimens themselves were subjected to mechanical and thermal tests as well as measuring dimensional changes. Tested as fibres, straw presented higher tensile resistance and water absorption than seagrass; but tested within adobe specimens, straw containing samples had worse mechanical behaviour than those containing seagrass. Specially, adobe with Posidonia Ocenaica seagrass fibres with their natural long length showed to be the most suitable in terms of mechanical behaviour. Furthermore, good thermal conductivity results were achieved with this level of biomass reinforcement, generating a sustainable and value-added construction product. Published by Elsevier Ltd.
2020
Istituto di Tecnologie Avanzate per l'Energia - ITAE
Earth construction
Biomass by-products
Seagrass fibres
Mechanical and thermal properties
Sustainable composite
Building envelopes
Energy efficiency in buildings
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/426536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact