The resolution of a linear system with positive integer variables is a basic yet difficult computational problem with many applications. We consider sparse uncorrelated random systems parametrised by the density c and the ratio alpha = N/M between number of variables N and number of constraints M. By means of ensemble calculations we show that the space of feasible solutions endows a Van-Der-Waals phase diagram in the plane (c, alpha). We give numerical evidence that the associated computational problems become more difficult across the critical point and in particular in the coexistence region.

Phase transitions in integer linear problems

Leuzzi L;
2017

Abstract

The resolution of a linear system with positive integer variables is a basic yet difficult computational problem with many applications. We consider sparse uncorrelated random systems parametrised by the density c and the ratio alpha = N/M between number of variables N and number of constraints M. By means of ensemble calculations we show that the space of feasible solutions endows a Van-Der-Waals phase diagram in the plane (c, alpha). We give numerical evidence that the associated computational problems become more difficult across the critical point and in particular in the coexistence region.
2017
Istituto di Nanotecnologia - NANOTEC - Sede Secondaria Roma
classical phase transitions
typical-case computational complexity
File in questo prodotto:
File Dimensione Formato  
Colabrese_2017_J._Stat._Mech._2017_093404.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/426713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact