The Large Aperture Telescope Technology (LATT) goes beyond the current paradigm of future space telescopes, based on a deformable mirror in the pupil relay. Through the LATT project we demonstrated the concept of a low-weight active primary mirror, whose working principle and control strategy benefit from two decades of advances in adaptive optics for ground-based telescopes. We developed a forty centimeter spherical mirror prototype, with an areal density lower than 17 kg/m(2), controlled through contactless voice coil actuators with co-located capacitive position sensors. The prototype was subjected to thermo-vacuum, vibration and optical tests, to push its technical readiness toward level 5. In this paper we present the background and the outcomes of the LATT activities under ESA contract (TRP programme), exploring the concept of a lightweight active primary mirror for space telescopes. Active primaries will open the way to very large segmented apertures, actively shaped, which can be lightweight, deployable and accurately phased once in flight.

The LATT way towards large active primaries for space telescopes

d'Amato Francesco;Pucci Mauro;
2016

Abstract

The Large Aperture Telescope Technology (LATT) goes beyond the current paradigm of future space telescopes, based on a deformable mirror in the pupil relay. Through the LATT project we demonstrated the concept of a low-weight active primary mirror, whose working principle and control strategy benefit from two decades of advances in adaptive optics for ground-based telescopes. We developed a forty centimeter spherical mirror prototype, with an areal density lower than 17 kg/m(2), controlled through contactless voice coil actuators with co-located capacitive position sensors. The prototype was subjected to thermo-vacuum, vibration and optical tests, to push its technical readiness toward level 5. In this paper we present the background and the outcomes of the LATT activities under ESA contract (TRP programme), exploring the concept of a lightweight active primary mirror for space telescopes. Active primaries will open the way to very large segmented apertures, actively shaped, which can be lightweight, deployable and accurately phased once in flight.
2016
Istituto Nazionale di Ottica - INO
978-1-5106-0188-8
Active Optics
Wavefront correctors
Deformable mirrors
Space telescopes
low-weight primary mirrors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/426761
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact