We consider large linear systems arising from the isogeometric discretization of the Poisson problem on a single-patch domain. The numerical solution of such systems is considered a challenging task, particularly when the degree of the splines employed as basis functions is high. We consider a preconditioning strategy which is based on the solution of a Sylvester-like equation at each step of an iterative solver. We show that this strategy, which fully exploits the tensor structure that underlies isogeometric problems, is robust with respect to both mesh size and spline degree, although it may suffer from the presence of complicated geometry or coefficients. We consider two popular solvers for the Sylvester equation, a direct one and an iterative one, and we discuss in detail their implementation and efficiency for two-dimensional (2D) and three-dimensional (3D) problems on single-patch or conforming multipatch nonuniform rational B-splines (NURBS) geometries. We present numerical experiments for problems with different domain geometries which demonstrate the potential of this approach.

Isogeometric preconditioners based on fast solvers for the Sylvester equation

G Sangalli;M Tani
2016

Abstract

We consider large linear systems arising from the isogeometric discretization of the Poisson problem on a single-patch domain. The numerical solution of such systems is considered a challenging task, particularly when the degree of the splines employed as basis functions is high. We consider a preconditioning strategy which is based on the solution of a Sylvester-like equation at each step of an iterative solver. We show that this strategy, which fully exploits the tensor structure that underlies isogeometric problems, is robust with respect to both mesh size and spline degree, although it may suffer from the presence of complicated geometry or coefficients. We consider two popular solvers for the Sylvester equation, a direct one and an iterative one, and we discuss in detail their implementation and efficiency for two-dimensional (2D) and three-dimensional (3D) problems on single-patch or conforming multipatch nonuniform rational B-splines (NURBS) geometries. We present numerical experiments for problems with different domain geometries which demonstrate the potential of this approach.
2016
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Isogeometric analysis
preconditioning
Kronecker product
Sylvester equation
File in questo prodotto:
File Dimensione Formato  
prod_448689-doc_163719.pdf

accesso aperto

Descrizione: Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation
Tipologia: Versione Editoriale (PDF)
Dimensione 754.91 kB
Formato Adobe PDF
754.91 kB Adobe PDF Visualizza/Apri
prod_448689-doc_163720.pdf

solo utenti autorizzati

Descrizione: Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation
Tipologia: Versione Editoriale (PDF)
Dimensione 625.54 kB
Formato Adobe PDF
625.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/426765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 68
social impact