This paper presents the design and the development of a Battery Assisted Passive Radio-Frequency IDentification (RFID) tag in the Ultra High-Frequency band integrated with inertial measurement unit (IMU) sensors tested for the biomechanical analysis of human body movements. Enhanced by a compact and efficient meandered Planar Inverted-F Antenna (PIFA), the device exploits a specific RFID chip having a dual-access --wired and wireless-- to the memory. A properly decoupled cell battery is also foreseen to boost the chip sensitivity and to supply power to an ultra-low power microcontroller and to the sensors. The device has been realized using off-the-shelf low-cost discrete components on FR4 substrate, validated, and tested in capturing real human movements. Two sensor-tags have been applied on the pelvis and on the torso of an individual moving in front of the RFID Reader antenna. Afterward, sensor data have been collected, processed, and filtered with specific algorithms, and used to control a musculoskeletal virtual model in the OpenSense software tool. The results show that the whole system correctly reproduces the performed movements, demonstrating the appropriateness of the proposed RFID-sensor in wireless movement capture applications.

Design of UHF RFID Sensor-Tags for the Biomechanical Analysis of Human Body Movements

Colella R;Tumolo MR;Sabina S;Leo CG;Mincarone P;Guarino R;
2021

Abstract

This paper presents the design and the development of a Battery Assisted Passive Radio-Frequency IDentification (RFID) tag in the Ultra High-Frequency band integrated with inertial measurement unit (IMU) sensors tested for the biomechanical analysis of human body movements. Enhanced by a compact and efficient meandered Planar Inverted-F Antenna (PIFA), the device exploits a specific RFID chip having a dual-access --wired and wireless-- to the memory. A properly decoupled cell battery is also foreseen to boost the chip sensitivity and to supply power to an ultra-low power microcontroller and to the sensors. The device has been realized using off-the-shelf low-cost discrete components on FR4 substrate, validated, and tested in capturing real human movements. Two sensor-tags have been applied on the pelvis and on the torso of an individual moving in front of the RFID Reader antenna. Afterward, sensor data have been collected, processed, and filtered with specific algorithms, and used to control a musculoskeletal virtual model in the OpenSense software tool. The results show that the whole system correctly reproduces the performed movements, demonstrating the appropriateness of the proposed RFID-sensor in wireless movement capture applications.
2021
Istituto di Fisiologia Clinica - IFC
Istituto di Ricerche sulla Popolazione e le Politiche Sociali - IRPPS
Inertial sensors
Motion analysis
Planar Inverted-F Antenna
RFID Sensor-tag
UHF technology
File in questo prodotto:
File Dimensione Formato  
prod_448708-doc_165368.pdf

solo utenti autorizzati

Descrizione: Full Text
Tipologia: Documento in Post-print
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/426784
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact