Carbon-based nanomaterials, particularly in the form of N-doped networks, are receiving the attention of the catalysis community as effective metal-free systems for a relatively wide range of industrially relevant transformations. Among them, they have drawn attention as highly valuable and durable catalysts for the selective hydrogen sulfide oxidation to elemental sulfur in the treatment of natural gas. In this contribution, we report the outstanding performance of N-C/SiC based composites obtained by the surface coating of a non-oxide ceramic with a mesoporous N-doped carbon phase, starting from commercially available and cheap food-grade components. Our study points out on the importance of controlling the chemical and morphological properties of the N-C phase to get more effective and robust catalysts suitable to operate HS removal from sour (acid) gases under severe desulfurization conditions (high GHSVs and concentrations of aromatics as sour gas stream contaminants). We firstly discuss the optimization of the SiC impregnation/thermal treatment sequences for the N-C phase growth as well as on the role of aromatic contaminants in concentrations as high as 4 vol.% on the catalyst performance and its stability on run. A long-term desulfurization process (up to 720 h), in the presence of intermittent toluene rates (as aromatic contaminant) and variable operative temperatures, has been used to validate the excellent performance of our optimized N-C/SiC catalyst as well as to rationalize its unique stability and coke-resistance on run.

Tailoring properties of metal-free catalysts for the highly efficient desulfurization of sour gases under harsh conditions

Tuci Giulia;Giambastiani Giuliano;
2021

Abstract

Carbon-based nanomaterials, particularly in the form of N-doped networks, are receiving the attention of the catalysis community as effective metal-free systems for a relatively wide range of industrially relevant transformations. Among them, they have drawn attention as highly valuable and durable catalysts for the selective hydrogen sulfide oxidation to elemental sulfur in the treatment of natural gas. In this contribution, we report the outstanding performance of N-C/SiC based composites obtained by the surface coating of a non-oxide ceramic with a mesoporous N-doped carbon phase, starting from commercially available and cheap food-grade components. Our study points out on the importance of controlling the chemical and morphological properties of the N-C phase to get more effective and robust catalysts suitable to operate HS removal from sour (acid) gases under severe desulfurization conditions (high GHSVs and concentrations of aromatics as sour gas stream contaminants). We firstly discuss the optimization of the SiC impregnation/thermal treatment sequences for the N-C phase growth as well as on the role of aromatic contaminants in concentrations as high as 4 vol.% on the catalyst performance and its stability on run. A long-term desulfurization process (up to 720 h), in the presence of intermittent toluene rates (as aromatic contaminant) and variable operative temperatures, has been used to validate the excellent performance of our optimized N-C/SiC catalyst as well as to rationalize its unique stability and coke-resistance on run.
2021
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
BTX contaminants
Elemental sulfur
Gas-tail desulfurization treatment
Mesoporous N-doped carbon coating
Silicon carbide composites
File in questo prodotto:
File Dimensione Formato  
Catalysts 2021, 11, 226.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 21.35 MB
Formato Adobe PDF
21.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/426822
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact