Connections between the Görling-Levy (GL) perturbation theory and the parameters of double-hybrid (DH) density functional are established via adiabatic connection formalism. Moreover, we present a more general DH density functional theory, where the higher-order perturbation terms beyond the second-order GL2 one, such as GL3 and GL4, also contribute. It is shown that a class of DH functionals including previously proposed ones can be formed using the present construction. Based on the proposed formalism, we assess the performance of higher-order DH and long-range corrected DH formed on the Perdew-Burke-Ernzerhof (PBE) semilocal functional and second-order GL2 correlation energy. The underlying construction of DH functionals based on the generalized many-body perturbation approaches is physically appealing in terms of the development of the non-local forms using more accurate and sophisticated semilocal functionals.

Generalizing Double-Hybrid Density Functionals: Impact of Higher-Order Perturbation Terms

Constantin LA;
2020

Abstract

Connections between the Görling-Levy (GL) perturbation theory and the parameters of double-hybrid (DH) density functional are established via adiabatic connection formalism. Moreover, we present a more general DH density functional theory, where the higher-order perturbation terms beyond the second-order GL2 one, such as GL3 and GL4, also contribute. It is shown that a class of DH functionals including previously proposed ones can be formed using the present construction. Based on the proposed formalism, we assess the performance of higher-order DH and long-range corrected DH formed on the Perdew-Burke-Ernzerhof (PBE) semilocal functional and second-order GL2 correlation energy. The underlying construction of DH functionals based on the generalized many-body perturbation approaches is physically appealing in terms of the development of the non-local forms using more accurate and sophisticated semilocal functionals.
2020
Istituto Nanoscienze - NANO
density functional theory
File in questo prodotto:
File Dimensione Formato  
jana-et-al-2020-generalizing-double-hybrid-density-functionals-impact-of-higher-order-perturbation-terms.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/427214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact