Three different Advanced Oxidation Processes (AOPs) have been investigated for the degradation of the imidacloprid pesticide in water: photocatalysis, Fenton and photo-Fenton reactions. For these tests, we have compared the performance of two types of CeO2, employed as a non-conventional photocatalyst/Fenton-like material. The first one has been prepared by chemical precipitation with KOH, while the second one has been obtained by exposing the as-synthetized CeO2 to solar irradiation in H-2 stream. This latter treatment led to obtain a more defective CeO2 (coded as "grey CeO2") with the formation of Ce3+ sites on the surface of CeO2, as determined by Raman and X-ray Photoelectron Spectroscopy (XPS) characterizations. This peculiar feature has been demonstrated as beneficial for the solar photo-Fenton reaction, with the best performance exhibited by the grey CeO2. On the contrary, the bare CeO2 showed a photocatalytic activity higher with respect to the grey CeO2, due to the higher exposed surface area and the lower band-gap. The easy synthetic procedures of CeO2 reported here, allows to tune and modify the physico-chemical properties of CeO2, allowing a choice of different CeO2 samples on the basis of the specific AOPs for water remediation. Furthermore, neither of the samples have shown any critical toxicity.
CeO2 for Water Remediation: Comparison of Various Advanced Oxidation Processes
Fiorenza Roberto;Privitera Vittorio;Impellizzeri Giuliana
2020
Abstract
Three different Advanced Oxidation Processes (AOPs) have been investigated for the degradation of the imidacloprid pesticide in water: photocatalysis, Fenton and photo-Fenton reactions. For these tests, we have compared the performance of two types of CeO2, employed as a non-conventional photocatalyst/Fenton-like material. The first one has been prepared by chemical precipitation with KOH, while the second one has been obtained by exposing the as-synthetized CeO2 to solar irradiation in H-2 stream. This latter treatment led to obtain a more defective CeO2 (coded as "grey CeO2") with the formation of Ce3+ sites on the surface of CeO2, as determined by Raman and X-ray Photoelectron Spectroscopy (XPS) characterizations. This peculiar feature has been demonstrated as beneficial for the solar photo-Fenton reaction, with the best performance exhibited by the grey CeO2. On the contrary, the bare CeO2 showed a photocatalytic activity higher with respect to the grey CeO2, due to the higher exposed surface area and the lower band-gap. The easy synthetic procedures of CeO2 reported here, allows to tune and modify the physico-chemical properties of CeO2, allowing a choice of different CeO2 samples on the basis of the specific AOPs for water remediation. Furthermore, neither of the samples have shown any critical toxicity.| File | Dimensione | Formato | |
|---|---|---|---|
|
FiorenzaCatalysts2020.pdf
accesso aperto
Descrizione: Articolo in rivista
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
5.38 MB
Formato
Adobe PDF
|
5.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


