Machine learning has emerged as a promising paradigm for enabling connected, automated vehicles to autonomously cruise the streets and react to unexpected situations. Reacting to such situations requires accurate classification for uncommon events, which in turn depends on the selection of large, diverse, and high-quality training data. In fact, the data available at a vehicle (e.g., photos of road signs) may be affected by errors or have different levels of resolution and freshness. To tackle this challenge, we propose an active learning framework that, leveraging the information collected through onboard sensors as well as received from other vehicles, effectively deals with scarce and noisy data. Given the information received from neighboring vehicles, our solution: (i) selects which vehicles can reliably generate high-quality training data, and (ii) obtains a reliable subset of data to add to the training set by trading off between two essential features, i.e., quality and diversity. The results, obtained with different real-world datasets, demonstrate that our framework significantly outperforms state-of-the-art solutions, providing high classification accuracy with a limited bandwidth requirement for the data exchange between vehicles.

Active Learning with Noisy Labelers for Improving Classification Accuracy of Connected Vehicles

Carla Fabiana Chiasserini;Francesco Malandrino;
2021

Abstract

Machine learning has emerged as a promising paradigm for enabling connected, automated vehicles to autonomously cruise the streets and react to unexpected situations. Reacting to such situations requires accurate classification for uncommon events, which in turn depends on the selection of large, diverse, and high-quality training data. In fact, the data available at a vehicle (e.g., photos of road signs) may be affected by errors or have different levels of resolution and freshness. To tackle this challenge, we propose an active learning framework that, leveraging the information collected through onboard sensors as well as received from other vehicles, effectively deals with scarce and noisy data. Given the information received from neighboring vehicles, our solution: (i) selects which vehicles can reliably generate high-quality training data, and (ii) obtains a reliable subset of data to add to the training set by trading off between two essential features, i.e., quality and diversity. The results, obtained with different real-world datasets, demonstrate that our framework significantly outperforms state-of-the-art solutions, providing high classification accuracy with a limited bandwidth requirement for the data exchange between vehicles.
2021
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
machine learning; vehicular networks
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/427412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact