Angiogenesis is a process encompassing several steps such as endothelial cells proliferation, differentiation and migration to form a vascular network, involving different signal transduction pathways. Among these, ERK1/2 signaling mediates VEGF-dependent signaling pathway. Here we report that the water extract of Ruta graveolens (RGWE), widely known as a medicinal plant, is able to impair in a dose-dependent manner, cell network formation without affecting cell viability. Biochemical analysis showed that the major component of RGWE is rutin, unable to reproduce RGWE effect. We found that RGWE inhibits ERK1/2 phosphorylation and that this event is crucial in cell network formation since the transfection of HUVEC with a constitutively active MEK (caMEK), the ERK1/2 activator, induces a robust cell network formation as compared to untransfected and/or mock transfected cells and, more importantly, caMEK transfected cells became unresponsive to RGWE. Moreover, RGWE inhibits VEGF and nestin gene expression, necessary for vessel formation, and the caMEK transfection induces their higher expression. In conclusion, we report that RGWE is able to significantly impair vessels network formation without affecting cell viability, preventing ERK1/2 activation and, in turn, down-regulating VEGF and nestin expression. These findings point to RGWE as a potential therapeutic tool capable to interfere with pathologic angiogenesis.

Ruta graveolens water extract inhibits cell-cell network formation in human umbilical endothelial cells via MEK-ERK1/2 pathway

Cioffi Sara;
2018

Abstract

Angiogenesis is a process encompassing several steps such as endothelial cells proliferation, differentiation and migration to form a vascular network, involving different signal transduction pathways. Among these, ERK1/2 signaling mediates VEGF-dependent signaling pathway. Here we report that the water extract of Ruta graveolens (RGWE), widely known as a medicinal plant, is able to impair in a dose-dependent manner, cell network formation without affecting cell viability. Biochemical analysis showed that the major component of RGWE is rutin, unable to reproduce RGWE effect. We found that RGWE inhibits ERK1/2 phosphorylation and that this event is crucial in cell network formation since the transfection of HUVEC with a constitutively active MEK (caMEK), the ERK1/2 activator, induces a robust cell network formation as compared to untransfected and/or mock transfected cells and, more importantly, caMEK transfected cells became unresponsive to RGWE. Moreover, RGWE inhibits VEGF and nestin gene expression, necessary for vessel formation, and the caMEK transfection induces their higher expression. In conclusion, we report that RGWE is able to significantly impair vessels network formation without affecting cell viability, preventing ERK1/2 activation and, in turn, down-regulating VEGF and nestin expression. These findings point to RGWE as a potential therapeutic tool capable to interfere with pathologic angiogenesis.
2018
Istituto di genetica e biofisica "Adriano Buzzati Traverso"- IGB - Sede Napoli
Endothelial cells
Angiogenesis
Natural compounds
RGWE
ERK signaling
VEGF
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/427648
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact