A novel colorimetric nanosensor is reported for the selective and sensitive determination of cysteine using magnetic-sulfur, nitrogen graphene quantum dots (Fe3O4/S, N-GQDs) and gold nanoparticles (Au NPs). Thus, S, N-GQDs was firstly immobilized on Fe3O4 nanoparticles through its magnetization in the presence of Fe3+ in the alkali solution. The prepared Fe3O4/S, N-GQDs was dispersed in cysteine solution resulting in its quick adsorption on the surface of the Fe3O4/S, N-GQDs through hydrogen bonding interaction. Then, Au NPs solution was added to this mixture that after a short time, the color of Au NPs changed from red to blue, the intensity of surface plasmon resonance peak of Au NPs at 530 nm decreased, and a new peak at a higher wavelength of 680 nm appeared. The effective parameters on cysteine quantification were optimized via response surface methodology using central composite design. Under optimum conditions, the absorbance ratio (A680/A530) has a linear proportionality with cysteine concentration in the range of 0.04-1.20 µmol L-1 with a limit of detection 0.009 µmol L-1. The fabrication of reported nanosensor is simple, fast, and is capable of efficient quantification of ultra traces of cysteine in human serum and urine real samples.
Fabrication of a sensitive colorimetric nanosensor for determination of cysteine in human serum and urine samples based on magnetic-sulfur, nitrogen graphene quantum dots as a selective platform and Au nanoparticles
Roberto Verucchi
2021
Abstract
A novel colorimetric nanosensor is reported for the selective and sensitive determination of cysteine using magnetic-sulfur, nitrogen graphene quantum dots (Fe3O4/S, N-GQDs) and gold nanoparticles (Au NPs). Thus, S, N-GQDs was firstly immobilized on Fe3O4 nanoparticles through its magnetization in the presence of Fe3+ in the alkali solution. The prepared Fe3O4/S, N-GQDs was dispersed in cysteine solution resulting in its quick adsorption on the surface of the Fe3O4/S, N-GQDs through hydrogen bonding interaction. Then, Au NPs solution was added to this mixture that after a short time, the color of Au NPs changed from red to blue, the intensity of surface plasmon resonance peak of Au NPs at 530 nm decreased, and a new peak at a higher wavelength of 680 nm appeared. The effective parameters on cysteine quantification were optimized via response surface methodology using central composite design. Under optimum conditions, the absorbance ratio (A680/A530) has a linear proportionality with cysteine concentration in the range of 0.04-1.20 µmol L-1 with a limit of detection 0.009 µmol L-1. The fabrication of reported nanosensor is simple, fast, and is capable of efficient quantification of ultra traces of cysteine in human serum and urine real samples.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.