Background: Tasting is a complex process involving chemosensory perception and cognitive evaluation. Different experimental designs and solution delivery approaches may in part explain the variability reported in literature. These technical aspects certainly limit the development of taste-related brain computer interface devices. New Method: We propose a novel modular, scalable and low-cost device for rapid injection of small volumes of taste solutions during fMRI experiments that gathers the possibility to flexibly increase the number of channels, allowing complex multi-dimensional taste experiments. We provide the full description of the hardware and software architecture and illustrate the application of the working prototype in single-subject event-related fMRI experiments by showing the BOLD responses to basic taste qualities and to five intensities of tastes during the course of perception. Results: The device is shown to be effective in activating multiple clusters within the gustatory pathway and a precise time-resolved event-related analysis is shown to be possible by the impulsive nature of the induced perception.

A low-cost open-architecture taste delivery system for gustatory fMRI and BCI experiments

Prinster Anna;Magliulo Mario;Pirozzi Maria Agnese;
2019

Abstract

Background: Tasting is a complex process involving chemosensory perception and cognitive evaluation. Different experimental designs and solution delivery approaches may in part explain the variability reported in literature. These technical aspects certainly limit the development of taste-related brain computer interface devices. New Method: We propose a novel modular, scalable and low-cost device for rapid injection of small volumes of taste solutions during fMRI experiments that gathers the possibility to flexibly increase the number of channels, allowing complex multi-dimensional taste experiments. We provide the full description of the hardware and software architecture and illustrate the application of the working prototype in single-subject event-related fMRI experiments by showing the BOLD responses to basic taste qualities and to five intensities of tastes during the course of perception. Results: The device is shown to be effective in activating multiple clusters within the gustatory pathway and a precise time-resolved event-related analysis is shown to be possible by the impulsive nature of the induced perception.
2019
Gustometer
Gustatory processing
fMRI
Event-related design
Brain computer interface
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/427829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact