Aim: Discriminating healthy brain from GBM tissues in an animal model through the combination of Raman and reflectance spectroscopies.
Significance: Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. With a worldwide incidence rate of 2 to 3 per 100,000 people, it accounts for more than 60% of all brain cancers; currently, its 5-year survival rate is <5%. GBM treatment relies mainly on surgical resection. In this framework, multimodal optical spectroscopy could provide a fast and label-free tool for improving tumor detection and guiding the removal of diseased tissues.
In vivo detection of murine glioblastoma through Raman and reflectance fiber-probe spectroscopies
Baria Enrico;Pillai Vinoshene;Ratto Gian M;Cicchi Riccardo
2020
Abstract
Significance: Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. With a worldwide incidence rate of 2 to 3 per 100,000 people, it accounts for more than 60% of all brain cancers; currently, its 5-year survival rate is <5%. GBM treatment relies mainly on surgical resection. In this framework, multimodal optical spectroscopy could provide a fast and label-free tool for improving tumor detection and guiding the removal of diseased tissues.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
NPh-007-045010.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.94 MB
Formato
Adobe PDF
|
2.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.