Liquid droplet whispering-gallery-mode microresonators open a new research frontier for sensing, optomechanics and photonic devices. At visible wavelengths, where most liquids are transparent, a major contribution to a droplet optical quality factor is expected theoretically from thermal surface distortions and capillary waves. Here, we investigate experimentally these predictions using transient cavity ring-down spectroscopy. With our scheme, the optical out-coupling and intrinsic loss are measured independently while any perturbation induced by thermal, acoustic and laser-frequency noise is avoided thanks to the ultra-short light-cavity interaction time. The measurements reveal a photon lifetime at least ten times longer than the thermal limit and indicate that capillary fluctuations activate surface scattering effects responsible for light coupling. This suggests that droplet microresonators are an ideal optical platform for ultra-sensitive spectroscopy of highly transparent liquid compounds in nano-liter volumes.

Fundamental limits in high-Q droplet microresonators

Giorgini A;Avino S;Malara P;De Natale P;Gagliardi G
2017

Abstract

Liquid droplet whispering-gallery-mode microresonators open a new research frontier for sensing, optomechanics and photonic devices. At visible wavelengths, where most liquids are transparent, a major contribution to a droplet optical quality factor is expected theoretically from thermal surface distortions and capillary waves. Here, we investigate experimentally these predictions using transient cavity ring-down spectroscopy. With our scheme, the optical out-coupling and intrinsic loss are measured independently while any perturbation induced by thermal, acoustic and laser-frequency noise is avoided thanks to the ultra-short light-cavity interaction time. The measurements reveal a photon lifetime at least ten times longer than the thermal limit and indicate that capillary fluctuations activate surface scattering effects responsible for light coupling. This suggests that droplet microresonators are an ideal optical platform for ultra-sensitive spectroscopy of highly transparent liquid compounds in nano-liter volumes.
2017
Istituto Nazionale di Ottica - INO
whispering galery modes
droplets
microresonators
surface scattering
thermal noise
File in questo prodotto:
File Dimensione Formato  
prod_449300-doc_167712.pdf

accesso aperto

Descrizione: Fundamental limits in high-Q droplet microresonators
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/427910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact