Transmission Electron Microscope (TEM) is the only diagnostic tool giving access to it. However, being a diffraction-based technique, TEM images only aromatic systems and thus, it is particularly useful to combine it with electron energy-loss spectroscopy (EELS), able to provide quantitative information about the relative abundance of sp3 and sp2 hybridized carbon. In this paper a method for the EELS spectrum analysis of carbonaceous materials recently developed for electron-irradiated graphite and glassy carbon composition analysis has been applied for the first time on soot samples, in order to test its performance in soot nanostructure study in combination with TEM.
On the application of EELS for investigating soot nanostructure
B Apicella;A Ciajolo;C Russo
2021
Abstract
Transmission Electron Microscope (TEM) is the only diagnostic tool giving access to it. However, being a diffraction-based technique, TEM images only aromatic systems and thus, it is particularly useful to combine it with electron energy-loss spectroscopy (EELS), able to provide quantitative information about the relative abundance of sp3 and sp2 hybridized carbon. In this paper a method for the EELS spectrum analysis of carbonaceous materials recently developed for electron-irradiated graphite and glassy carbon composition analysis has been applied for the first time on soot samples, in order to test its performance in soot nanostructure study in combination with TEM.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.