The paper presents the dynamic characterization of a novel CO system designed for the refrigerated transport sector, when equipped to a medium-size refrigerated truck, during a daily typical long-distance delivery mission. The system takes advantage of a two-phase ejector to improve its performances and an auxiliary evaporator to extend the ejector operating range towards mild ambient temperatures. The system is designed allowing the possibility to switch between different configurations during operation, in order to maximize the COP or the refrigerating capacity, as a function of internal air and external environmental conditions. A numerical model of the system and its control strategy is developed using a 0-D dynamic commercial software, and coupled with a validated model of a refrigerated body. Simulation results show an average COP equal to 1.60 and an overall Duty Cycle of 10% for the delivery mission. The 96.6% of the total cooling energy is provided exploiting both the main and the auxiliary evaporator; however, dynamic simulations allowed highlighting that using the configuration exploiting both the evaporators during the hottest moments of the day can become counterproductive. Moreover, the behavior of the two-phase ejector under different environmental air temperature conditions is investigated. The maximum values of the average ejector efficiency (10.1%) and of the average pressure lift (1.59 bar) are reached for the highest external ambient temperatures (36.0 °C). Finally, to avoid the temperature and pressure drift inside the low pressure side of the refrigerating system during a long time of inactivity, an innovative safety control system based on the definition of a maximum allowed pressure level inside the low pressure side of the cooling unit is proposed.

Dynamic modelling of a CO2 transport refrigeration unit with multiple configurations

Fabris F;Marinetti S;Minetto S
;
Rossetti A
2021

Abstract

The paper presents the dynamic characterization of a novel CO system designed for the refrigerated transport sector, when equipped to a medium-size refrigerated truck, during a daily typical long-distance delivery mission. The system takes advantage of a two-phase ejector to improve its performances and an auxiliary evaporator to extend the ejector operating range towards mild ambient temperatures. The system is designed allowing the possibility to switch between different configurations during operation, in order to maximize the COP or the refrigerating capacity, as a function of internal air and external environmental conditions. A numerical model of the system and its control strategy is developed using a 0-D dynamic commercial software, and coupled with a validated model of a refrigerated body. Simulation results show an average COP equal to 1.60 and an overall Duty Cycle of 10% for the delivery mission. The 96.6% of the total cooling energy is provided exploiting both the main and the auxiliary evaporator; however, dynamic simulations allowed highlighting that using the configuration exploiting both the evaporators during the hottest moments of the day can become counterproductive. Moreover, the behavior of the two-phase ejector under different environmental air temperature conditions is investigated. The maximum values of the average ejector efficiency (10.1%) and of the average pressure lift (1.59 bar) are reached for the highest external ambient temperatures (36.0 °C). Finally, to avoid the temperature and pressure drift inside the low pressure side of the refrigerating system during a long time of inactivity, an innovative safety control system based on the definition of a maximum allowed pressure level inside the low pressure side of the cooling unit is proposed.
2021
Istituto per le Tecnologie della Costruzione - ITC - Sede Secondaria Padova
CO2
Transcritical
Transport Refrigeration
Ejector
Dynamic simulation
File in questo prodotto:
File Dimensione Formato  
ATE 2021 CO2 Dynamic Mission.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.97 MB
Formato Adobe PDF
4.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/428003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact