Bimetallic Au/Pd nanoscale-thick films were sputter-deposited at room temperature on a silicon carbide (SiC) surface, and the surface-morphology evolution of the films versus thickness was studied with scanning electron microscopy. This study allowed to elucidate the Au/Pd growth mechanism by identifying characteristic growth regimes, and to quantify the characteristic parameters of the growth process. In particular, we observed that the Au/Pd film initially grew as three-dimensional clusters; then, increasing Au/Pd film thickness, film morphology evolved from isolated clusters to partially coalesced wormlike structures, followed by percolation morphology, and, finally, into a continuous rough film. The application of the interrupted coalescence model allowed us to evaluate a critical mean cluster diameter for partial coalescence, and the application of Vincent's model allowed us to quantify the critical Au/Pd coverage for percolation transition.
Morphology evolution of nanoscale-thick Au/Pd bimetallic films on silicon carbide substrat
Ruffino Francesco;
2020
Abstract
Bimetallic Au/Pd nanoscale-thick films were sputter-deposited at room temperature on a silicon carbide (SiC) surface, and the surface-morphology evolution of the films versus thickness was studied with scanning electron microscopy. This study allowed to elucidate the Au/Pd growth mechanism by identifying characteristic growth regimes, and to quantify the characteristic parameters of the growth process. In particular, we observed that the Au/Pd film initially grew as three-dimensional clusters; then, increasing Au/Pd film thickness, film morphology evolved from isolated clusters to partially coalesced wormlike structures, followed by percolation morphology, and, finally, into a continuous rough film. The application of the interrupted coalescence model allowed us to evaluate a critical mean cluster diameter for partial coalescence, and the application of Vincent's model allowed us to quantify the critical Au/Pd coverage for percolation transition.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.