Heavy doping of Ge is crucial for several advanced micro- and optoelectronic applications, but, at the same time, it still remains extremely challenging. Ge heavily n-type doped at a concentration of 1 × 10cm by As ion implantation and melting laser thermal annealing (LTA) is shown here to be highly metastable. Upon post-LTA conventional thermal annealing As electrically deactivates already at 350 °C reaching an active concentration of ~4 × 10cm. No significant As diffusion is detected up to 450 °C, where the As activation decreases further to ~3 × 10cm. The reason for the observed detrimental deactivation was investigated by Atom Probe Tomography and in situ High Resolution X-Ray Diffraction measurements. In general, the thermal stability of heavily doped Ge layers needs to be carefully evaluated because, as shown here, deactivation might occur at very low temperatures, close to those required for low resistivity Ohmic contacting of n-type Ge.

Low temperature deactivation of Ge heavily n-type doped by ion implantation and laser thermal annealing

Milazzo R;Impellizzeri G;La Magna A;Fortunato G;Privitera V;Napolitani E
2017

Abstract

Heavy doping of Ge is crucial for several advanced micro- and optoelectronic applications, but, at the same time, it still remains extremely challenging. Ge heavily n-type doped at a concentration of 1 × 10cm by As ion implantation and melting laser thermal annealing (LTA) is shown here to be highly metastable. Upon post-LTA conventional thermal annealing As electrically deactivates already at 350 °C reaching an active concentration of ~4 × 10cm. No significant As diffusion is detected up to 450 °C, where the As activation decreases further to ~3 × 10cm. The reason for the observed detrimental deactivation was investigated by Atom Probe Tomography and in situ High Resolution X-Ray Diffraction measurements. In general, the thermal stability of heavily doped Ge layers needs to be carefully evaluated because, as shown here, deactivation might occur at very low temperatures, close to those required for low resistivity Ohmic contacting of n-type Ge.
2017
Istituto per la Microelettronica e Microsistemi - IMM
germanium
arsenic
laser annealing
thermal stability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/428125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact