High-Throughput Sequencing technologies are providing unprecedented inventories of microbial communities in aquatic samples, offering an invaluable tool to estimate the impact of anthropogenic pressure on marine communities. In this case study, the Mediterranean touristic site of Aci Castello (Italy) was investigated by High-Throughput Sequencing of 16S and 18S rRNA genes. The sampling area falls within a Marine Protected Area and, notwithstanding, features an untreated urban wastewater discharge. Seawater samples were collected close to the wastewater output (COL) and at a second station about 400 m further off (PAN), before and after a summer increase in population. Prokaryotic communities clustered according to stations, rather than to seasons. While PAN showed a typical, not impacted, marine microbial composition, COL was consistently enriched in Epsilonproteobacteria and Firmicutes. Protist communities showed a peculiar clustering, as COL at springtime stood alone and was dominated by Ciliophora, while the other samples were enriched in Dinophyta. Analysis of alternative, detectable by High-Throughput Sequencing, microbial indicators, including both faecal- and sewage-associated, allowed uncovering the different sources of pollution in coastal and anthropogenically impacted marine ecosystems, underpinning the relevance of High-Throughput Sequencing-based screening as rapid and precise method for water quality management.

Investigating microbial indicators of anthropogenic marine pollution by 16S and 18S High-Throughput Sequencing (HTS) library analysis

Quero GM;
2019

Abstract

High-Throughput Sequencing technologies are providing unprecedented inventories of microbial communities in aquatic samples, offering an invaluable tool to estimate the impact of anthropogenic pressure on marine communities. In this case study, the Mediterranean touristic site of Aci Castello (Italy) was investigated by High-Throughput Sequencing of 16S and 18S rRNA genes. The sampling area falls within a Marine Protected Area and, notwithstanding, features an untreated urban wastewater discharge. Seawater samples were collected close to the wastewater output (COL) and at a second station about 400 m further off (PAN), before and after a summer increase in population. Prokaryotic communities clustered according to stations, rather than to seasons. While PAN showed a typical, not impacted, marine microbial composition, COL was consistently enriched in Epsilonproteobacteria and Firmicutes. Protist communities showed a peculiar clustering, as COL at springtime stood alone and was dominated by Ciliophora, while the other samples were enriched in Dinophyta. Analysis of alternative, detectable by High-Throughput Sequencing, microbial indicators, including both faecal- and sewage-associated, allowed uncovering the different sources of pollution in coastal and anthropogenically impacted marine ecosystems, underpinning the relevance of High-Throughput Sequencing-based screening as rapid and precise method for water quality management.
2019
Istituto per le Risorse Biologiche e le Biotecnologie Marine - IRBIM
anthropogenic impact; Mediterranean Sea; marine microbiome; High-Throughput Sequencing; faecal pollution; faecal alternative indicators
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/428293
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact