Chemical species at the surface (ligands) of colloidal inorganic semiconductor nanocrystals (QDs) markedly impact the optoelectronic properties of the resulting systems. Here, post-synthesis surface chemistry modification of colloidal metal chalcogenide QDs is demonstrated to induce both broadband absorption enhancement and band gap reduction. A comprehensive library of chalcogenol(ate) ligands is exploited to infer the role of surface chemistry on the QD optical absorption: the ligand chalcogenol(ate) binding group mainly determines the narrowing of the optical band gap, which is attributed to the np occupied orbital contribution to the valence band edge, and mediates the absorption enhancement, which is related to the ?-conjugation of the ligand pendant moiety, with further contribution from electron donor substituents. These findings point to a description of colloidal QDs that may conceive ligands as part of the overall QD electronic structure, beyond models derived from analogies with core/shell heterostructures, which consider ligands as mere perturbation to the core properties. The enhanced light absorption achieved via surface chemistry modification may be exploited for QD-based applications in which an efficient light-harvesting initiates charge carrier separation or redox processes.

Enhancing light absorption by colloidal metal chalcogenide quantum dots via chalcogenol(ate) surface ligands

Giansante;Carlo
2019

Abstract

Chemical species at the surface (ligands) of colloidal inorganic semiconductor nanocrystals (QDs) markedly impact the optoelectronic properties of the resulting systems. Here, post-synthesis surface chemistry modification of colloidal metal chalcogenide QDs is demonstrated to induce both broadband absorption enhancement and band gap reduction. A comprehensive library of chalcogenol(ate) ligands is exploited to infer the role of surface chemistry on the QD optical absorption: the ligand chalcogenol(ate) binding group mainly determines the narrowing of the optical band gap, which is attributed to the np occupied orbital contribution to the valence band edge, and mediates the absorption enhancement, which is related to the ?-conjugation of the ligand pendant moiety, with further contribution from electron donor substituents. These findings point to a description of colloidal QDs that may conceive ligands as part of the overall QD electronic structure, beyond models derived from analogies with core/shell heterostructures, which consider ligands as mere perturbation to the core properties. The enhanced light absorption achieved via surface chemistry modification may be exploited for QD-based applications in which an efficient light-harvesting initiates charge carrier separation or redox processes.
2019
surface chemistry
colloidal nanomaterials
inorganic semiconductors
quantum confinement
optical properties
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/428381
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact