The combination of chemotherapy and photodynamic therapy (PDT) is considered a valuable strategy for increasing therapeutic response in cancer treatment, and the re-formulation of pharmaceuticals in biocompatible nanoparticles (NPs) is particularly appealing for the possibility of co-loading drugs exerting cytotoxicity by different mechanisms, with the aim to produce synergic effects. We report the in-water synthesis of a novel keratin-based nanoformulation for the co-delivery of the antimitotic Docetaxel (DTX) and the photosensitizer Chlorin e6 (Ce6). The drug-induced aggregation method allowed the formation of monodisperse NPs (DTX/Ce6-KNPs) with an average diameter of 133 nm and loaded with a drug ratio of 1:1.8 of Ce6 vs DTX. The efficacy of DTX/Ce6-KNPs was investigated in vitro in monolayers and spheroids of DTX-sensitive HeLa (HeLa-P) and DTX-resistant HeLa (HeLa-T) cells. In monolayers, the cytotoxic effects of DTX/Ce6-KNPs toward HeLa-P cells were comparable to those induced by free DTX + Ce6, while in HeLa-R cells the drug co-loading in KNPs produced synergic interaction between chemotherapy and PDT. Moreover, as respect to monotherapies, DTX/Ce6-KNPs induced stronger cytotoxicity to both HeLa-P and HeLa-R multicellular spheroids and reduced their volumes up to 50%. Overall, the results suggest that KNPs are very promising systems for the co-delivery of chemotherapeutics and PSs, favoring synergic interactions between PDT and chemotherapy.

Keratin nanoparticles co-delivering Docetaxel and Chlorin e6 promote synergic interaction between chemo- and photo-dynamic therapies

Guerrini Andrea;Ballestri Marco;Varchi Greta;Ferroni Claudia;Martella Elisa;
2019

Abstract

The combination of chemotherapy and photodynamic therapy (PDT) is considered a valuable strategy for increasing therapeutic response in cancer treatment, and the re-formulation of pharmaceuticals in biocompatible nanoparticles (NPs) is particularly appealing for the possibility of co-loading drugs exerting cytotoxicity by different mechanisms, with the aim to produce synergic effects. We report the in-water synthesis of a novel keratin-based nanoformulation for the co-delivery of the antimitotic Docetaxel (DTX) and the photosensitizer Chlorin e6 (Ce6). The drug-induced aggregation method allowed the formation of monodisperse NPs (DTX/Ce6-KNPs) with an average diameter of 133 nm and loaded with a drug ratio of 1:1.8 of Ce6 vs DTX. The efficacy of DTX/Ce6-KNPs was investigated in vitro in monolayers and spheroids of DTX-sensitive HeLa (HeLa-P) and DTX-resistant HeLa (HeLa-T) cells. In monolayers, the cytotoxic effects of DTX/Ce6-KNPs toward HeLa-P cells were comparable to those induced by free DTX + Ce6, while in HeLa-R cells the drug co-loading in KNPs produced synergic interaction between chemotherapy and PDT. Moreover, as respect to monotherapies, DTX/Ce6-KNPs induced stronger cytotoxicity to both HeLa-P and HeLa-R multicellular spheroids and reduced their volumes up to 50%. Overall, the results suggest that KNPs are very promising systems for the co-delivery of chemotherapeutics and PSs, favoring synergic interactions between PDT and chemotherapy.
2019
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Combination therapy
Keratin nanoparticle
Docetaxel
Chlorin e6
Synergism
Tumor spheroid
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/428397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact