This work presents a methodology for the short-term forecast of intense rainfall based on a neural network and the integration of Global Navigation and Positioning System (GNSS) and meteorological data. Precipitable water vapor (PWV) derived from GNSS is combined with surface pressure, surface temperature and relative humidity obtained continuously from a ground-based meteorological station. Five years of GNSS data from one station in Lisbon, Portugal, are processed. Data for precipitation forecast are also collected from the meteorological station. Spaceborne Spinning Enhanced Visible and Infrared Imager (SEVIRI) data of cloud top measurements are also gathered, providing collocated information on an hourly basis. In previous studies it was found that the time-varying PWV is correlated with rainfall and can be used to detected heavy rain. However, a significant number of false positives were found, meaning that the evolution of PWV does not contain enough information to infer future rain. In this work, a nonlinear autoregressive exogenous neural network model (NARX) is used to process the GNSS and meteorological data to forecast the hourly precipitation. The proposed methodology improves the detection of intense rainfall events and reduces the number of false positives, with a good classification score varying from 63% up to 72% and a false positive rate of 36% down to 21%, for the tested years in the dataset. A score of 64% for intense rain events classification with 22% false positive rate is obtained for the most recent years. The method also achieves an almost 100% hit rate for the rain vs no rain detection, with close to no false alarms.

Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors

Nico Giovanni
2019

Abstract

This work presents a methodology for the short-term forecast of intense rainfall based on a neural network and the integration of Global Navigation and Positioning System (GNSS) and meteorological data. Precipitable water vapor (PWV) derived from GNSS is combined with surface pressure, surface temperature and relative humidity obtained continuously from a ground-based meteorological station. Five years of GNSS data from one station in Lisbon, Portugal, are processed. Data for precipitation forecast are also collected from the meteorological station. Spaceborne Spinning Enhanced Visible and Infrared Imager (SEVIRI) data of cloud top measurements are also gathered, providing collocated information on an hourly basis. In previous studies it was found that the time-varying PWV is correlated with rainfall and can be used to detected heavy rain. However, a significant number of false positives were found, meaning that the evolution of PWV does not contain enough information to infer future rain. In this work, a nonlinear autoregressive exogenous neural network model (NARX) is used to process the GNSS and meteorological data to forecast the hourly precipitation. The proposed methodology improves the detection of intense rainfall events and reduces the number of false positives, with a good classification score varying from 63% up to 72% and a false positive rate of 36% down to 21%, for the tested years in the dataset. A score of 64% for intense rain events classification with 22% false positive rate is obtained for the most recent years. The method also achieves an almost 100% hit rate for the rain vs no rain detection, with close to no false alarms.
2019
Istituto Applicazioni del Calcolo ''Mauro Picone''
global navigation satellite system (GNSS)
precipitable water vapor (PWV)
precipitation
meteorological sensors
spinning enhanced visible and infrared imager (SEVIRI)
neural network
forecast
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/428698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact