Pathogenic mutations in the non-syndromic hearing loss and deafness 1 (DFNB1) locus are the primary cause of monogenic inheritance for prelingual hearing loss. To unravel molecular pathways involved in etiopathology and look for early degeneration biomarkers, we used a system biology approach to analyze Cx30-/- mice at an early cochlear post-natal developmental stage. These mice are a DFNB1 mouse model with severely reduced expression levels of two connexins in the inner ear, Cx30, and Cx26. Integrated analysis of miRNA and mRNA expression profiles in the cochleae of Cx30-/- mice at post-natal day 5 revealed the overexpression of five miRNAs (miR-34c, miR-29b, miR-29c, miR-141, and miR-181a) linked to apoptosis, oxidative stress, and cochlear degeneration, which have Sirt1 as a common target of transcriptional and/or post-transcriptional regulation. In young adult Cx30-/- mice (3 months of age), these alterations culminated with blood barrier disruption in the Stria vascularis (SV), which is known to have the highest aerobic metabolic rate of all cochlear structures and whose microvascular alterations contribute to age-related degeneration and progressive decline of auditory function. Our experimental validation of selected targets links hearing acquisition failure in Cx30-/- mice, early oxidative stress, and metabolic dysregulation to the activation of the Sirt1-p53 axis. This is the first integrated analysis of miRNA and mRNA in the cochlea of the Cx30-/- mouse model, providing evidence that connexin downregulation determines a miRNA-mediated response which leads to chronic exhaustion of cochlear antioxidant defense mechanisms and consequent SV dysfunction. Our analyses support the notion that connexin dysfunction intervenes early on during development, causing vascular damage later on in life. This study identifies also early miRNA-mediated biomarkers of hearing impairment, either inherited or age related.

miRNA and mRNA Profiling Links Connexin Deficiency to Deafness via Early Oxidative Damage in the Mouse Stria Vascularis

Giulia Gentile;Antonio Gianmaria Spampinato;Maria Guarnaccia;Giulia Crispino;Ferdinando Scavizzi;Marcello Raspa;Sebastiano Cavallaro;Fabio Mammano
2021

Abstract

Pathogenic mutations in the non-syndromic hearing loss and deafness 1 (DFNB1) locus are the primary cause of monogenic inheritance for prelingual hearing loss. To unravel molecular pathways involved in etiopathology and look for early degeneration biomarkers, we used a system biology approach to analyze Cx30-/- mice at an early cochlear post-natal developmental stage. These mice are a DFNB1 mouse model with severely reduced expression levels of two connexins in the inner ear, Cx30, and Cx26. Integrated analysis of miRNA and mRNA expression profiles in the cochleae of Cx30-/- mice at post-natal day 5 revealed the overexpression of five miRNAs (miR-34c, miR-29b, miR-29c, miR-141, and miR-181a) linked to apoptosis, oxidative stress, and cochlear degeneration, which have Sirt1 as a common target of transcriptional and/or post-transcriptional regulation. In young adult Cx30-/- mice (3 months of age), these alterations culminated with blood barrier disruption in the Stria vascularis (SV), which is known to have the highest aerobic metabolic rate of all cochlear structures and whose microvascular alterations contribute to age-related degeneration and progressive decline of auditory function. Our experimental validation of selected targets links hearing acquisition failure in Cx30-/- mice, early oxidative stress, and metabolic dysregulation to the activation of the Sirt1-p53 axis. This is the first integrated analysis of miRNA and mRNA in the cochlea of the Cx30-/- mouse model, providing evidence that connexin downregulation determines a miRNA-mediated response which leads to chronic exhaustion of cochlear antioxidant defense mechanisms and consequent SV dysfunction. Our analyses support the notion that connexin dysfunction intervenes early on during development, causing vascular damage later on in life. This study identifies also early miRNA-mediated biomarkers of hearing impairment, either inherited or age related.
2021
Istituto per la Ricerca e l'Innovazione Biomedica -IRIB
Istituto di Biochimica e Biologia Cellulare - IBBC
connexins
molecular pathway analysis
early degeneration
systems biology
hearing loss
vascular dysfunction
post-natal development
oxidative stress
File in questo prodotto:
File Dimensione Formato  
prod_443006-doc_159104.pdf

accesso aperto

Descrizione: miRNA and mRNA Profiling Links Connexin Deficiency to Deafness via Early Oxidative Damage in the Mouse Stria Vascularis
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.59 MB
Formato Adobe PDF
5.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/428719
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact