Pythium isolates from diseased and dead bait plants of maize and cress grown in compost or various soils (maize fields, parkland under deciduous trees, grassland) were characterised and tested for pathogenicity to maize (Zea mays L.). In pot tests performed under controlled conditions, pathogenicity of the isolates to maize was apparent by reduction of root and shoot growth, whereas damping-off of maize seedlings was less frequent. Contrarily, pea seedlings were killed by pathogenic Pythium isolates. Pythium isolates from diseased maize seedlings and pathogenic strains from other gramineous plants (P. phragmitis, P. aff. phragmitis, P. catenulatum) were not necessarily more virulent to maize compared to isolates originating from dicotyledonous plants (cress). The most virulent isolates originated from compost and caused a reduction of maize shoot growth of up to 60%. Phylogenetic analysis revealed that they were very closely related to P. ultimum var. ultimum and P. arrhenomanes, respectively. Isolates originating from maize fields, grassland and parkland under deciduous trees, a reference culture of P. arrhenomanes and strains of P. phragmitis, P. aff. phragmitis and P. catenulatum with known pathogenicity on reed were non-pathogenic on maize. Isolates from compost, and from maize fields generally had a higher temperature optimum for mycelial growth (30 °C) and a faster growth rate (1.5-2.0 mm h-1) compared to the isolates from parkland under deciduous trees and grassland soil (20-25 °C, ~1.0 mm h-1), respectively. This study indicates a potential impact of pathogenic Pythium on maize plants even in the absence of visible symptoms.

Pathogenicity of Pythium species to maize

Leclerque A;
2020

Abstract

Pythium isolates from diseased and dead bait plants of maize and cress grown in compost or various soils (maize fields, parkland under deciduous trees, grassland) were characterised and tested for pathogenicity to maize (Zea mays L.). In pot tests performed under controlled conditions, pathogenicity of the isolates to maize was apparent by reduction of root and shoot growth, whereas damping-off of maize seedlings was less frequent. Contrarily, pea seedlings were killed by pathogenic Pythium isolates. Pythium isolates from diseased maize seedlings and pathogenic strains from other gramineous plants (P. phragmitis, P. aff. phragmitis, P. catenulatum) were not necessarily more virulent to maize compared to isolates originating from dicotyledonous plants (cress). The most virulent isolates originated from compost and caused a reduction of maize shoot growth of up to 60%. Phylogenetic analysis revealed that they were very closely related to P. ultimum var. ultimum and P. arrhenomanes, respectively. Isolates originating from maize fields, grassland and parkland under deciduous trees, a reference culture of P. arrhenomanes and strains of P. phragmitis, P. aff. phragmitis and P. catenulatum with known pathogenicity on reed were non-pathogenic on maize. Isolates from compost, and from maize fields generally had a higher temperature optimum for mycelial growth (30 °C) and a faster growth rate (1.5-2.0 mm h-1) compared to the isolates from parkland under deciduous trees and grassland soil (20-25 °C, ~1.0 mm h-1), respectively. This study indicates a potential impact of pathogenic Pythium on maize plants even in the absence of visible symptoms.
2020
Istituto per la Protezione Sostenibile delle Piante - IPSP
Maize . Oomycete pathogens. Phylogeny . Pythium . Seedling diseases. Soil-borne diseases
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/428741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact